메뉴 건너뛰기




Volumn , Issue , 2011, Pages 502-507

Developing a logistic regression model with cross-correlation for motor imagery signal recognition

Author keywords

Brain computer interface (BCI); Cross correlation technique; Electroencephalogram (EEG); Logistic regression model; Motor imagery (MI)

Indexed keywords

BRAIN-COMPUTER INTERFACE (BCI); CROSS CORRELATION TECHNIQUES; ELECTROENCEPHALOGRAM (EEG); LOGISTIC REGRESSION MODEL; MOTOR IMAGERY (MI);

EID: 79959947624     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCME.2011.5876793     Document Type: Conference Paper
Times cited : (24)

References (26)
  • 4
    • 0038012676 scopus 로고    scopus 로고
    • Brain-computer interface (BCI) operation: Optimizing information transfer rates
    • D. J. McFarland, W. A. Sarnacki and J. R. Wolpaw, "Brain-computer interface (BCI) operation: optimizing information transfer rates," Biol. Psycho., vol. 63, pp. 237-251, 2003.
    • (2003) Biol. Psycho. , vol.63 , pp. 237-251
    • McFarland, D.J.1    Sarnacki, W.A.2    Wolpaw, J.R.3
  • 5
    • 36949036886 scopus 로고    scopus 로고
    • Automatic selection of frequency and time intervals for classification of EEG signals
    • M. Dalponte, F. Bovolo and L. Bruzzone, "Automatic selection of frequency and time intervals for classification of EEG signals," Elect. Lett., vol. 43, no. 25, pp. 1406-1408, 2007.
    • (2007) Elect. Lett. , vol.43 , Issue.25 , pp. 1406-1408
    • Dalponte, M.1    Bovolo, F.2    Bruzzone, L.3
  • 6
    • 33745954612 scopus 로고    scopus 로고
    • Motor imagery: A backdoor to the motor imagery system after stroke?
    • N. Sharma, V.M. Pomeroy, and J.C. Baron, "Motor imagery: a backdoor to the motor imagery system after stroke?," Stroke., vol. 37, pp. 1941-1952, 2006.
    • (2006) Stroke , vol.37 , pp. 1941-1952
    • Sharma, N.1    Pomeroy, V.M.2    Baron, J.C.3
  • 7
    • 77953131563 scopus 로고    scopus 로고
    • A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data
    • T. Kayikcioglu and O. Aydemir, "A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data," Patt. Recog. Lett., vol. 31, pp. 1207-1215, 2010.
    • (2010) Patt. Recog. Lett. , vol.31 , pp. 1207-1215
    • Kayikcioglu, T.1    Aydemir, O.2
  • 8
    • 34247179140 scopus 로고    scopus 로고
    • A review of classification algorithms for EEG-based brain-computer interfaces
    • F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche and B. Amaldi, "A review of classification algorithms for EEG-based brain-computer interfaces," J. Neural Eng., vol. 4, pp. R1-R13, 2007.
    • (2007) J. Neural Eng. , vol.4
    • Lotte, F.1    Congedo, M.2    Lecuyer, A.3    Lamarche, F.4    Amaldi, B.5
  • 10
    • 51449117622 scopus 로고    scopus 로고
    • Sparse spatial filter optimization for EEG channel reduction in brain-computer interface
    • X, Yong, R.K. Ward and G.E. Birch, "Sparse spatial filter optimization for EEG channel reduction in brain-computer interface," ICASSP 2008, pp. 417-420.
    • ICASSP 2008 , pp. 417-420
    • Yong, X.1    Ward, R.K.2    Birch, G.E.3
  • 12
    • 79954523094 scopus 로고    scopus 로고
    • Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms
    • in press, July
    • F. Lotte and C. Guan, "Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms," IEEE Trans. on Biom. Eng., in press, July 2010.
    • (2010) IEEE Trans. on Biom. Eng.
    • Lotte, F.1    Guan, C.2
  • 13
    • 78649234118 scopus 로고    scopus 로고
    • Regularized common spatial patterns with aggregation for EEG classification in small-sample setting
    • December
    • H. Lu, H. L. Eng, C. Guan, K. N. Plataniotis, and A.N. Venetsanopoulos, "Regularized common spatial patterns with aggregation for EEG classification in small-sample setting," IEEE Trans. on Biom. Eng., vol. 57, no. 12, pp. 2936-2945, December 2010.
    • (2010) IEEE Trans. on Biom. Eng. , vol.57 , Issue.12 , pp. 2936-2945
    • Lu, H.1    Eng, H.L.2    Guan, C.3    Plataniotis, K.N.4    Venetsanopoulos, A.N.5
  • 14
    • 79960024318 scopus 로고    scopus 로고
    • Clustering technique-based least square support vector machine for EEG signal classification
    • in press
    • Siuly, Y. Li, and P. Wen, "Clustering technique-based least square support vector machine for EEG signal classification," Comp. Meth. and Prog. in Biom., in press, 2010.
    • (2010) Comp. Meth. and Prog. in Biom.
    • Siuly1    Li, Y.2    Wen, P.3
  • 15
    • 33749042323 scopus 로고    scopus 로고
    • Cross-correlation as a method for comparing dynamic electromyography signals during gait
    • T. A. L. Wren, K. P. do, S. A. Rethlefsen, and B. Healy, "Cross-correlation as a method for comparing dynamic electromyography signals during gait," J. of Biomech.,vol. 39, pp. 2714-2718, 2006.
    • (2006) J. of Biomech. , vol.39 , pp. 2714-2718
    • Wren, T.A.L.1    Do, K.P.2    Rethlefsen, S.A.3    Healy, B.4
  • 16
    • 56349106179 scopus 로고    scopus 로고
    • Cross-correlation aided support vector machine classifier for classification of EEG signals
    • S. Chandaka, A Chatterjee and S. Munshi, "Cross-correlation aided support vector machine classifier for classification of EEG signals," Exp. Syst. with Appl., vol. 36, pp. 1329-1336, 2009.
    • (2009) Exp. Syst. with Appl. , vol.36 , pp. 1329-1336
    • Chandaka, S.1    Chatterjee, A.2    Munshi, S.3
  • 17
    • 78449259555 scopus 로고    scopus 로고
    • Correlation techniques and least square support vector machine combine for frequency domain based ECG beat classification
    • in press
    • S. Dutta, A. Chatterjee and S. Munshi, "Correlation techniques and least square support vector machine combine for frequency domain based ECG beat classification," Med. Eng. and Phys., in press, 2010.
    • (2010) Med. Eng. and Phys.
    • Dutta, S.1    Chatterjee, A.2    Munshi, S.3
  • 19
    • 77949658813 scopus 로고    scopus 로고
    • Application of relevance vector machine and logistic regression for machine degradation assessment
    • W. Caesarendra, A. Widodo and B.S. Yang, "Application of relevance vector machine and logistic regression for machine degradation assessment," Mech. Syst. and Sign. Proce., vol. 24, pp. 1161-1171, 2010.
    • (2010) Mech. Syst. and Sign. Proce. , vol.24 , pp. 1161-1171
    • Caesarendra, W.1    Widodo, A.2    Yang, B.S.3
  • 21
    • 17744374301 scopus 로고    scopus 로고
    • Classification of EEG signals using neural network and logistic regression
    • A. Subasi and E. Ercelebi, "Classification of EEG signals using neural network and logistic regression," Comp. Meth. and Prog. in Biom., vol. 78, pp. 87-99, 2005.
    • (2005) Comp. Meth. and Prog. in Biom. , vol.78 , pp. 87-99
    • Subasi, A.1    Ercelebi, E.2
  • 24
    • 84860259505 scopus 로고    scopus 로고
    • EEG signal classification based on simple random sampling technique with least square support vector machines
    • in press
    • Siuly, Y. Li and P. Wen, "EEG signal classification based on simple random sampling technique with least square support vector machines," Int. J. of Biom. Eng. and Tech., in press, 2010.
    • (2010) Int. J. of Biom. Eng. and Tech.
    • Siuly1    Li, Y.2    Wen, P.3
  • 26
    • 69049087866 scopus 로고    scopus 로고
    • Classification of EEG signals using sampling techniques and least square support vector machines
    • RSKT 2009
    • Siuly, Y. Li and P. Wen, "Classification of EEG signals using sampling techniques and least square support vector machines," RSKT 2009, LNCS 5589, pp. 375-382.
    • LNCS , vol.5589 , pp. 375-382
    • Siuly1    Li, Y.2    Wen, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.