메뉴 건너뛰기




Volumn 7, Issue 4, 2011, Pages 390-409

EEG signal classification based on simple random sampling technique with least square support vector machine

Author keywords

EEG; Electroencephalogram; Feature extraction; Least square support vector machine; LS SVM; Signal classification; Simple random sampling technique

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATABASE SYSTEMS; ELECTROENCEPHALOGRAPHY; FEATURE EXTRACTION; SIGNAL SAMPLING; SUPPORT VECTOR MACHINES;

EID: 84860259505     PISSN: 17526418     EISSN: 17526426     Source Type: Journal    
DOI: 10.1504/IJBET.2011.044417     Document Type: Article
Times cited : (50)

References (30)
  • 1
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • DOI 10.1016/S0165-0270(02)00340-0, PII S0165027002003400
    • Adeli, H., Zhou, Z. and Dadmehr, N. (2003) 'Analysis of EEG records in an epileptic patient sing wavelet transform', J. Neurosci. Methods, Vol. 123, No. 1, pp.69-87. (Pubitemid 36173654)
    • (2003) Journal of Neuroscience Methods , vol.123 , Issue.1 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 2
    • 0035682573 scopus 로고    scopus 로고
    • Indication of non linear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P. and Elger, C.E. (2001) 'Indication of non linear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state', Physical Review E, Vol. 64, 061907.
    • (2001) Physical Review e , vol.64 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 4
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. (1998) 'A tutorial on support vector machines for pattern recognition', Data Mining and Knowledge Discovery, 2, 121-167. (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 5
    • 56349106179 scopus 로고    scopus 로고
    • Cross-correlation aided support vector machine classifier for classification of EEG signals
    • Chandaka, S., Chatterjee, A. and Munshi, S. (2009) 'Cross-correlation aided support vector machine classifier for classification of EEG signals', Expert System with Applications, Vol. 36, pp.1329-1336.
    • (2009) Expert System with Applications , vol.36 , pp. 1329-1336
    • Chandaka, S.1    Chatterjee, A.2    Munshi, S.3
  • 10
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett, T. (2006) 'An introduction to ROC analysis', Pattern Recognition Letters, Vol. 27, pp.861-874.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 11
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • DOI 10.1016/j.eswa.2005.04.011, PII S0957417405000679
    • Guler, N.F., Ubeylli, E.D. and Guler, I. (2005) 'Recurrent neural networks employing lyapunov exponents for EEG signals classification', Expert System with Applications, Vol. 29, pp.506-514. (Pubitemid 41230775)
    • (2005) Expert Systems with Applications , vol.29 , Issue.3 , pp. 506-514
    • Guler, N.F.1    Ubeyli, E.D.2    Guler, I.3
  • 12
    • 80655126368 scopus 로고    scopus 로고
    • Classification of EEG signals using relative wavelet energy and artificial neural networks
    • Guo, L., Rivero, D., Seoane, J.A. and Pazos, A. (2009) 'Classification of EEG signals using relative wavelet energy and artificial neural networks', GCE, pp.12-14.
    • (2009) GCE , pp. 12-14
    • Guo, L.1    Rivero, D.2    Seoane, J.A.3    Pazos, A.4
  • 14
    • 58349108297 scopus 로고    scopus 로고
    • An expert system based on least square support vector machines for diagnosis of the valvular heart disease
    • Hanbay, D. (2009) 'An expert system based on least square support vector machines for diagnosis of the valvular heart disease', Expert System with Applications, Vol. 36, pp.4232-4238.
    • (2009) Expert System with Applications , vol.36 , pp. 4232-4238
    • Hanbay, D.1
  • 15
    • 0031141135 scopus 로고    scopus 로고
    • Classification of EEG signals using the wavelet transform
    • PII S0165168497000388
    • Hazarika, N., Chen, J.Z., Tsoi, A.C. and Sergejew, A. (1997) 'Classification of EEG signals using the wavelet transform', Signal Process, Vol. 59, No. 1, pp.61-72. (Pubitemid 127416914)
    • (1997) Signal Processing , vol.59 , Issue.1 , pp. 61-72
    • Hazarika, N.1    Chen, J.Z.2    Tsoi, A.C.3    Sergejew, A.4
  • 17
    • 60249099979 scopus 로고    scopus 로고
    • Optimizing the performance of an MLP classifier for the automatic detection of epileptic spikes
    • Kutlu, Y., Kuntalp, M. and Kuntalp, D. (2009) 'Optimizing the performance of an MLP classifier for the automatic detection of epileptic spikes', Expert System with Applications, Vol. 36,pp.7567-7575.
    • (2009) Expert System with Applications , vol.36 , pp. 7567-7575
    • Kutlu, Y.1    Kuntalp, M.2    Kuntalp, D.3
  • 18
    • 71849106463 scopus 로고    scopus 로고
    • Support vector machine approach for classification of cancerous prostate regions
    • Makinac, M. (2005) 'Support vector machine approach for classification of cancerous prostate regions', World Academy of Science, Engineering and Technology, Vol. 7, pp.166-169.
    • (2005) World Academy of Science, Engineering and Technology , vol.7 , pp. 166-169
    • Makinac, M.1
  • 19
    • 10944237806 scopus 로고    scopus 로고
    • On the need for online learning in brain-computer interfaces
    • Martigny, Switzerland
    • Millán, J.R. (2004) 'On the need for online learning in brain-computer interfaces', Proc. 2004 Int. Joint Conf. Neural Networks, Martigny, Switzerland, Vol. 4, pp.2877-2882.
    • (2004) Proc. 2004 Int. Joint Conf. Neural Networks , vol.4 , pp. 2877-2882
    • Millán, J.R.1
  • 21
    • 32644450162 scopus 로고    scopus 로고
    • Using support vector machines to optimally classify rotator cuff strength data and quantify post-operative strength in rotator cuff tear patients
    • DOI 10.1016/j.jbiomech.2005.01.011, PII S0021929005000631
    • Silver, A.E., Lungren, M.P., Johnson, M.E., O'Driscoll, S.W., An, K.N. and Hughes, R.E. (2006) 'Using support vector machines to optimally classify rotator cuff strength data and quantify post-operative strength in rotator cuff tear patients', Journal of Biomechanics, Vol. 39, pp.973-979. (Pubitemid 43243786)
    • (2006) Journal of Biomechanics , vol.39 , Issue.5 , pp. 973-979
    • Silver, A.E.1    Lungren, M.P.2    Johnson, M.E.3    O'Driscoll, S.W.4    An, K.-N.5    Hughes, R.E.6
  • 22
    • 69049087866 scopus 로고    scopus 로고
    • Classification of EEG signals using sampling techniques and least square support vector machines
    • Siuly, Li, Y. and Wen, P. (2009) 'Classification of EEG signals using sampling techniques and least square support vector machines', RSKT 2009, LNCS 5589, pp.375-382.
    • (2009) RSKT 2009, LNCS , vol.5589 , pp. 375-382
    • Siuly Li, Y.1    Wen, P.2
  • 23
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • DOI 10.1016/j.eswa.2006.02.005, PII S0957417406000844
    • Subasi, A. (2007) 'EEG signal classification using wavelet feature extraction and a mixture of expert model', Expert System with Applications, Vol. 32, pp.1084-1093. (Pubitemid 44821797)
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 24
    • 17744374301 scopus 로고    scopus 로고
    • Classification of EEG signals using neural network and logistic regression
    • DOI 10.1016/j.cmpb.2004.10.009
    • Subasi, A. and Ercelebi, E. (2005) 'Classification of EEG signals using neural network and logistic regression', Computer Methods and programs in Biomedicine, Vol. 78, pp.87-99. (Pubitemid 40575687)
    • (2005) Computer Methods and Programs in Biomedicine , vol.78 , Issue.2 , pp. 87-99
    • Subasi, A.1    Ercelebi, E.2
  • 25
    • 37249047932 scopus 로고    scopus 로고
    • An improved random subspace method and its application to EEG signal classification
    • Sun, S. (2007) 'An improved random subspace method and its application to EEG signal classification', MCS 2007, LNCS 4472, pp.103-112.
    • (2007) MCS 2007, LNCS , vol.4472 , pp. 103-112
    • Sun, S.1
  • 26
    • 34548688428 scopus 로고    scopus 로고
    • An experimental evaluation of ensemble methods for EEG signal classification
    • DOI 10.1016/j.patrec.2007.06.018, PII S0167865507002085
    • Sun, S., Zhang, C. and Zhang, D.(2007) 'An experimental evaluation of ensemble methods for EEG signal classification', Pattern Recognition Letters, Vol. 28, pp.2157-2163. (Pubitemid 47418328)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.15 , pp. 2157-2163
    • Sun, S.1    Zhang, C.2    Zhang, D.3
  • 28
    • 37349024109 scopus 로고    scopus 로고
    • Wavelet/mixture of experts network structure for EEG signals classification
    • DOI 10.1016/j.eswa.2007.02.006, PII S0957417407000735
    • Ubeyli, E.D. (2008) 'Wavelet/mixture of experts network structure for EEG signals classification', Expert System With Applications, Vol. 34, pp.1954-1962. (Pubitemid 350298216)
    • (2008) Expert Systems with Applications , vol.34 , Issue.3 , pp. 1954-1962
    • Ubeyli, E.D.1
  • 29
    • 70349472753 scopus 로고    scopus 로고
    • Least square support vector machine employing model-based methods coefficients for analysis of EEG signals
    • Ubeyli, E.D. (2010) 'Least square support vector machine employing model-based methods coefficients for analysis of EEG signals', Expert System with Applications, Vol. 37, No. 10, pp.233-239.
    • (2010) Expert System with Applications , vol.37 , Issue.10 , pp. 233-239
    • Ubeyli, E.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.