메뉴 건너뛰기




Volumn 31, Issue 7, 2010, Pages 1478-1485

Improving the accuracy of predicting disulfide connectivity by feature selection

Author keywords

Disulfide connectivity prediction; Feature selection; Fisher score; Protein structure prediction; Support vector machine

Indexed keywords

COMPUTATIONAL PREDICTIONS; CONNECTIVITY PATTERN; COVALENT CROSS-LINKS; CYSTEINE RESIDUES; DIMENSIONAL SPACES; DISULFIDE BONDS; EFFICIENT FEATURE SELECTIONS; FEATURE REDUNDANCY; FEATURE SELECTION; FISHER SCORE; HIGH-DIMENSIONAL; HIGH-DIMENSIONAL FEATURE SPACE; NONLOCAL; OVERFITTING; POLYPEPTIDE CHAIN; PREDICTION PERFORMANCE; PRIMARY SEQUENCES; PROTEIN STRUCTURE PREDICTION; REDUNDANT INFORMATIONS; STATISTICAL LEARNING; STRUCTURAL INFORMATION; STRUCTURAL STUDIES;

EID: 77950878660     PISSN: 01928651     EISSN: 1096987X     Source Type: Journal    
DOI: 10.1002/jcc.21433     Document Type: Article
Times cited : (44)

References (53)
  • 53
    • 84898931668 scopus 로고    scopus 로고
    • Advances in Neural Information Processing Systems 17 (NIPS 2004), Saul, L.; Weiss, Y.; Bottou, L. editors, MIT Press, Cambridge, MA
    • Baldi, P.; Cheng, J.; Vullo, A. Large-Scale Prediction of Disulphide Bond Connectivity. Advances in Neural Information Processing Systems 17 (NIPS 2004), Saul, L.; Weiss, Y.; Bottou, L. editors, MIT Press, Cambridge, MA, 2005, pp. 97-104.
    • (2005) Large-Scale Prediction of Disulphide Bond Connectivity. , pp. 97-104
    • Baldi, P.1    Cheng, J.2    Vullo, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.