-
1
-
-
0003408496
-
-
Univ. of Calif. Irvine: Dept. of Info, and Comp. Sci.
-
Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. Available online at http://www.ics.uci.edu/~mlearn/MLRepository.html. Univ. of Calif. Irvine: Dept. of Info, and Comp. Sci.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Merz, C.J.2
-
2
-
-
0034228643
-
The analysis of decomposition methods for support vector machines
-
Chang, C.-C., Hsu, C.-W., & Lin, C.-J. (2000). The analysis of decomposition methods for support vector machines. IEEE Trans. Neural Networks, 11(4), 1003-1008.
-
(2000)
IEEE Trans. Neural Networks
, vol.11
, Issue.4
, pp. 1003-1008
-
-
Chang, C.-C.1
Hsu, C.-W.2
Lin, C.-J.3
-
3
-
-
0004614981
-
-
Tech. Rep.. Taipei, Taiwan: Department of Computer Science and Information Engineering, National Taiwan University
-
Chang, C.-C., & Lin, C.-J. (2000). LIBSVM: Introduction and benchmarks (Tech. Rep.). Taipei, Taiwan: Department of Computer Science and Information Engineering, National Taiwan University.
-
(2000)
LIBSVM: Introduction and Benchmarks
-
-
Chang, C.-C.1
Lin, C.-J.2
-
4
-
-
0042496086
-
A geometric interpretation of ν-SVM classifiers
-
M. S. Kearns, S. Solla, & D. Cohn (Eds.), Cambridge, MA: MIT Press
-
Crisp, D. J., & Burges, C. J. C. (1999). A geometric interpretation of ν-SVM classifiers. In M. S. Kearns, S. Solla, & D. Cohn (Eds.), Advances in neural information processing, 11. Cambridge, MA: MIT Press.
-
(1999)
Advances in Neural Information Processing
, vol.11
-
-
Crisp, D.J.1
Burges, C.J.C.2
-
5
-
-
0000897328
-
The kernel adatron algorithm: A fast and simple learning procedure for support vector machines
-
San Mateo, CA: Morgan Kaufmann
-
Friess, T.-T., Cristianini, N., & Campbell, C. (1998). The kernel adatron algorithm: A fast and simple learning procedure for support vector machines. In Proceedings of 15th Intl. Conf. Machine Learning. San Mateo, CA: Morgan Kaufmann.
-
(1998)
Proceedings of 15th Intl. Conf. Machine Learning
-
-
Friess, T.-T.1
Cristianini, N.2
Campbell, C.3
-
6
-
-
0008200160
-
-
Tech. Rep.. Taipei, Taiwan: Department of Computer Science and Information Engineering, National Taiwan University. To appear in Machine Learning
-
Hsu, C.-W., & Lin, C.-J. (1999). A simple decomposition method for support vector machines (Tech. Rep.). Taipei, Taiwan: Department of Computer Science and Information Engineering, National Taiwan University. To appear in Machine Learning.
-
(1999)
A Simple Decomposition Method for Support Vector Machines
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
7
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Cambridge, MA: MIT Press
-
Joachims, T. (1998). Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Advances in kernel methods - Support vector learning, Cambridge, MA: MIT Press.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
-
-
Joachims, T.1
-
9
-
-
0033640690
-
A fast iterative nearest point algorithm for support vector machine classifier design
-
Keerthi, S., Shevade, C. B. S. K., & Murthy, K. R. K. (2000). A fast iterative nearest point algorithm for support vector machine classifier design. IEEE Trans. Neural Networks, 11(1), 124-136.
-
(2000)
IEEE Trans. Neural Networks
, vol.11
, Issue.1
, pp. 124-136
-
-
Keerthi, S.1
Shevade, C.B.S.K.2
Murthy, K.R.K.3
-
10
-
-
0003984755
-
-
Tech. Rep.. Taipei, Taiwan: Department of Computer Science and Information Engineering, National Taiwan University
-
Lin, C.-J. (2000). On the convergence of the decomposition method for support vector machines (Tech. Rep.). Taipei, Taiwan: Department of Computer Science and Information Engineering, National Taiwan University.
-
(2000)
On the Convergence of the Decomposition Method for Support Vector Machines
-
-
Lin, C.-J.1
-
11
-
-
0000222692
-
Formulations of support vector machines: A note from an optimization point of view
-
Lin, C.-J. (2001). Formulations of support vector machines: A note from an optimization point of view. Neural Computation, 13(2), 307-317.
-
(2001)
Neural Computation
, vol.13
, Issue.2
, pp. 307-317
-
-
Lin, C.-J.1
-
12
-
-
0032594961
-
Successive overrelaxation for support vector machines
-
Mangasarian, O. L., & Musicant, D. R. (1999). Successive overrelaxation for support vector machines. IEEE Trans. Neural Networks, 10(5), 1032-1037.
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, Issue.5
, pp. 1032-1037
-
-
Mangasarian, O.L.1
Musicant, D.R.2
-
13
-
-
34250122797
-
Interpolation of scattered data: Distance matrices and conditionally positive definite functions
-
Micchelli, C. A. (1986). Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constructive Approximation, 2, 11-22.
-
(1986)
Constructive Approximation
, vol.2
, pp. 11-22
-
-
Micchelli, C.A.1
-
14
-
-
0003612091
-
-
Englewood Cliffs, NJ: Prentice Hall
-
Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine learning, neural and statistical classification. Englewood Cliffs, NJ: Prentice Hall. Available online at anonymous ftp: ftp.ncc.up.pt/pub/statlog/.
-
(1994)
Machine Learning, Neural and Statistical Classification
-
-
Michie, D.1
Spiegelhalter, D.J.2
Taylor, C.C.3
-
15
-
-
0003408496
-
-
Technical Rep.. Irvine, CA: University of California, Department of Information and Computer Science
-
Murphy, P. M., & Aha, D. W. (1994). UCI repository of machine learning databases (Technical Rep.). Irvine, CA: University of California, Department of Information and Computer Science. Data available online at: http://www.ics.uci. edu/~mlearn/MLRepository.html.
-
(1994)
UCI Repository of Machine Learning Databases
-
-
Murphy, P.M.1
Aha, D.W.2
-
16
-
-
0030673582
-
Training support vector machines: An application to face detection
-
Osuna, E., Freund, R., & Girosi, F. (1997). Training support vector machines: An application to face detection. In Proceedings of CVPR'97.
-
(1997)
Proceedings of CVPR'97
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
17
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Cambridge, MA: MIT Press
-
Platt, J. C. (1998). Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Advances in kernel methods - Support vector learning. Cambridge, MA: MIT Press.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
-
-
Platt, J.C.1
-
18
-
-
0004267646
-
-
Princeton, NJ: Princeton University Press
-
Rockafellar, R. T. (1970). Convex analysis. Princeton, NJ: Princeton University Press.
-
(1970)
Convex Analysis
-
-
Rockafellar, R.T.1
-
19
-
-
0004296379
-
-
Technical Rep. CSD-TR-98-03. Egham, UK: Royal Holloway, University of London
-
Saunders, C., Stitson, M. O., Weston, J., Bottou, L., Schölkopf, B., & Smola, A. (1998). Support vector machine reference manual (Technical Rep. CSD-TR-98-03). Egham, UK: Royal Holloway, University of London.
-
(1998)
Support Vector Machine Reference Manual
-
-
Saunders, C.1
Stitson, M.O.2
Weston, J.3
Bottou, L.4
Schölkopf, B.5
Smola, A.6
-
20
-
-
50249155939
-
Shrinking the tube: A new support vector regression algorithm
-
M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Cambridge, MA: MIT Press
-
Schölkopf, B., Smola, A. J., & Williamson, R. (1999). Shrinking the tube: A new support vector regression algorithm. In M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Advances in neural information processing systems, 11. Cambridge, MA: MIT Press.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
-
-
Schölkopf, B.1
Smola, A.J.2
Williamson, R.3
-
21
-
-
17444438778
-
New support vector algorithms
-
Schölkopf, B., Smola, A., Williamson, R. C., & Bartlett, P. L. (2000). New support vector algorithms. Neural Computation, 12, 1207-1245.
-
(2000)
Neural Computation
, vol.12
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.2
Williamson, R.C.3
Bartlett, P.L.4
|