-
1
-
-
2342475726
-
Protein ranking: from local to global structure in the protein similarity network
-
Weston A.E.J., Zhou D., Leslie C.S., Noble W.S. Protein ranking: from local to global structure in the protein similarity network. Proc. Natl. Acad. Sci. USA 2004, 101:6559-6563.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 6559-6563
-
-
Weston, A.E.J.1
Zhou, D.2
Leslie, C.S.3
Noble, W.S.4
-
2
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
Furey T.S., Cristianini N., Duffy N., Bednarski D.W., Schummer M., Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16:906-914.
-
(2000)
Bioinformatics
, vol.16
, pp. 906-914
-
-
Furey, T.S.1
Cristianini, N.2
Duffy, N.3
Bednarski, D.W.4
Schummer, M.5
Haussler, D.6
-
3
-
-
80051490632
-
Improving protein structure prediction using multiple sequence-based contact predictions
-
Wu S., Szilagyi A., Zhang Y. Improving protein structure prediction using multiple sequence-based contact predictions. Structure 2011, 19:1182-1191.
-
(2011)
Structure
, vol.19
, pp. 1182-1191
-
-
Wu, S.1
Szilagyi, A.2
Zhang, Y.3
-
4
-
-
41349114023
-
A comprehensive assessment of sequence-based and template-based methods for protein contact prediction
-
Wu S., Zhang Y. A comprehensive assessment of sequence-based and template-based methods for protein contact prediction. Bioinformatics 2008, 24:924-931.
-
(2008)
Bioinformatics
, vol.24
, pp. 924-931
-
-
Wu, S.1
Zhang, Y.2
-
5
-
-
33748449804
-
Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition
-
Wang S.Q., Yang J., Chou K.C. Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition. J. Theor. Biol. 2006, 242:941-946.
-
(2006)
J. Theor. Biol.
, vol.242
, pp. 941-946
-
-
Wang, S.Q.1
Yang, J.2
Chou, K.C.3
-
6
-
-
80052204561
-
Structural Protein Descriptors in 1-Dimension and their Sequence-Based Predictions
-
Kurgan L., Miri Disfani F. Structural Protein Descriptors in 1-Dimension and their Sequence-Based Predictions. Curr. Protein. Pept. Sci. 2011, 12:470-489.
-
(2011)
Curr. Protein. Pept. Sci.
, vol.12
, pp. 470-489
-
-
Kurgan, L.1
Miri Disfani, F.2
-
7
-
-
77956502766
-
Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources
-
Mizianty M.J., Stach W., Chen K., Kedarisetti K.D., Disfani F.M., Kurgan L. Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. Bioinformatics 2010, 26:i489-i496.
-
(2010)
Bioinformatics
, vol.26
-
-
Mizianty, M.J.1
Stach, W.2
Chen, K.3
Kedarisetti, K.D.4
Disfani, F.M.5
Kurgan, L.6
-
8
-
-
58149269554
-
Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs
-
Chen K., Jiang Y., Du L., Kurgan L. Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs. J. Comput. Chem. 2009, 30:163-172.
-
(2009)
J. Comput. Chem.
, vol.30
, pp. 163-172
-
-
Chen, K.1
Jiang, Y.2
Du, L.3
Kurgan, L.4
-
9
-
-
41049110433
-
Functional discrimination of membrane proteins using machine learning techniques
-
Gromiha M.M., Yabuki Y. Functional discrimination of membrane proteins using machine learning techniques. BMC Bioinformatics 2008, 9:135.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 135
-
-
Gromiha, M.M.1
Yabuki, Y.2
-
10
-
-
39749148317
-
Discrimination of mesophilic and thermophilic proteins using machine learning algorithms
-
Gromiha M.M., Suresh M.X. Discrimination of mesophilic and thermophilic proteins using machine learning algorithms. Proteins Struct. Funct. Bioinformatics 2008, 70:1274-1279.
-
(2008)
Proteins Struct. Funct. Bioinformatics
, vol.70
, pp. 1274-1279
-
-
Gromiha, M.M.1
Suresh, M.X.2
-
11
-
-
34547224599
-
Predicting protein N-glycosylation by combining functional domain and secretion information
-
Li S., Liu B., Cai Y., Li Y. Predicting protein N-glycosylation by combining functional domain and secretion information. J. Biomol. Struct. Dyn. 2007, 25:49-54.
-
(2007)
J. Biomol. Struct. Dyn.
, vol.25
, pp. 49-54
-
-
Li, S.1
Liu, B.2
Cai, Y.3
Li, Y.4
-
12
-
-
34447309058
-
De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures
-
Ng K.L.S., Mishra S.K. De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 2007, 23:1321-1330.
-
(2007)
Bioinformatics
, vol.23
, pp. 1321-1330
-
-
Ng, K.L.S.1
Mishra, S.K.2
-
13
-
-
75749156538
-
Structural analysis of regulatory DNA sequences using grammar inference and Support Vector Machine
-
Damasevicius R. Structural analysis of regulatory DNA sequences using grammar inference and Support Vector Machine. Neurocomputing 2010, 73:633-638.
-
(2010)
Neurocomputing
, vol.73
, pp. 633-638
-
-
Damasevicius, R.1
-
14
-
-
1542346418
-
A novel method for protein secondary structure prediction using dual-layer SVM and profiles,
-
Guo J., Chen H., Sun Z., Lin Y. A novel method for protein secondary structure prediction using dual-layer SVM and profiles,. Proteins Struct. Funct. Bioinformatics 2004, 54:738-743.
-
(2004)
Proteins Struct. Funct. Bioinformatics
, vol.54
, pp. 738-743
-
-
Guo, J.1
Chen, H.2
Sun, Z.3
Lin, Y.4
-
15
-
-
58149284018
-
Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments
-
Zheng C., Kurgan L. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments. BMC Bioinformatics 2008, 9:430.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 430
-
-
Zheng, C.1
Kurgan, L.2
-
16
-
-
0742271712
-
Combining protein secondary structure prediction models with ensemble methods of optimal complexity
-
Guermeur Y., Pollastri G., Elisseeff A., Zelus D., Paugam-Moisy H., Baldi P. Combining protein secondary structure prediction models with ensemble methods of optimal complexity. Neurocomputing 2004, 56:305-327.
-
(2004)
Neurocomputing
, vol.56
, pp. 305-327
-
-
Guermeur, Y.1
Pollastri, G.2
Elisseeff, A.3
Zelus, D.4
Paugam-Moisy, H.5
Baldi, P.6
-
17
-
-
70349466390
-
Multiple classifier integration for the prediction of protein structural classes
-
Chen L., Lu L., Feng K., Li W., Song J., Zheng L., Yuan Y., Zeng Z., Feng K., Lu W., Cai Y. Multiple classifier integration for the prediction of protein structural classes. J. Comput. Chem. 2009, 30:2248-2254.
-
(2009)
J. Comput. Chem.
, vol.30
, pp. 2248-2254
-
-
Chen, L.1
Lu, L.2
Feng, K.3
Li, W.4
Song, J.5
Zheng, L.6
Yuan, Y.7
Zeng, Z.8
Feng, K.9
Lu, W.10
Cai, Y.11
-
18
-
-
0037195776
-
Using functional domain composition and support vector machines for prediction of protein subcellular location
-
Chou K.C., Cai Y.D. Using functional domain composition and support vector machines for prediction of protein subcellular location. J. Biol. Chem. 2002, 277:45765-45769.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 45765-45769
-
-
Chou, K.C.1
Cai, Y.D.2
-
19
-
-
0034843744
-
Support vector machine approach for protein subcellular localization prediction
-
Hua S., Sun Z. Support vector machine approach for protein subcellular localization prediction. Bioinformatics 2001, 17:721-728.
-
(2001)
Bioinformatics
, vol.17
, pp. 721-728
-
-
Hua, S.1
Sun, Z.2
-
20
-
-
46049083380
-
Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins
-
Niu B., Jin Y.H., Feng K.Y., Lu W.C., Cai Y.D., Li G.Z. Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins. Mol. Diversity 2008, 12:41-45.
-
(2008)
Mol. Diversity
, vol.12
, pp. 41-45
-
-
Niu, B.1
Jin, Y.H.2
Feng, K.Y.3
Lu, W.C.4
Cai, Y.D.5
Li, G.Z.6
-
21
-
-
28444448722
-
Discrimination of outer membrane proteins using support vector machines
-
Park K.J., Gromiha M.M., Horton P., Suwa M. Discrimination of outer membrane proteins using support vector machines. Bioinformatics 2005, 21:4223-4229.
-
(2005)
Bioinformatics
, vol.21
, pp. 4223-4229
-
-
Park, K.J.1
Gromiha, M.M.2
Horton, P.3
Suwa, M.4
-
22
-
-
0034697980
-
Predicting subcellular localization of proteins based on their N-terminal amino acid sequence
-
Emanuelsson O., Nielsen H., Brunak S., von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000, 300:1005-1016.
-
(2000)
J. Mol. Biol.
, vol.300
, pp. 1005-1016
-
-
Emanuelsson, O.1
Nielsen, H.2
Brunak, S.3
von Heijne, G.4
-
23
-
-
0842326624
-
Application of SVM to predict membrane protein types
-
Cai Y.D., Ricardo P.W., Jen C.H., Chou K.C. Application of SVM to predict membrane protein types. J. Theor. Biol. 2004, 226:373-376.
-
(2004)
J. Theor. Biol.
, vol.226
, pp. 373-376
-
-
Cai, Y.D.1
Ricardo, P.W.2
Jen, C.H.3
Chou, K.C.4
-
24
-
-
78649756877
-
Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition
-
Hayat M., Khan A. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition. J. Theor. Biol. 2011, 271:10-17.
-
(2011)
J. Theor. Biol.
, vol.271
, pp. 10-17
-
-
Hayat, M.1
Khan, A.2
-
25
-
-
78650611734
-
A multi-stage automatic arrhythmia recognition and classification system
-
Kutlu Y., Kuntalp D. A multi-stage automatic arrhythmia recognition and classification system. Comput. Biol. Med. 2011, 41:37-45.
-
(2011)
Comput. Biol. Med.
, vol.41
, pp. 37-45
-
-
Kutlu, Y.1
Kuntalp, D.2
-
26
-
-
33846923287
-
In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using the Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors
-
Jensen B.F., Vind C., Padkjær S.B., Brockhoff P.B., Refsgaard H.H.F. In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using the Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors. J. Med. Chem. 2007, 50:501-511.
-
(2007)
J. Med. Chem.
, vol.50
, pp. 501-511
-
-
Jensen, B.F.1
Vind, C.2
Padkjær, S.B.3
Brockhoff, P.B.4
Refsgaard, H.H.F.5
-
27
-
-
0042622254
-
PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria
-
Gardy J.L., Spencer C., Wang K., Ester M., Tusnady G.E., Simon I., Hua S., Lambert C., Nakai K., Brinkman F.S.L. PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria. Nucleic Acids Res 2003, 31:3613-3617.
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 3613-3617
-
-
Gardy, J.L.1
Spencer, C.2
Wang, K.3
Ester, M.4
Tusnady, G.E.5
Simon, I.6
Hua, S.7
Lambert, C.8
Nakai, K.9
Brinkman, F.S.L.10
-
28
-
-
0034296402
-
Generalized discriminant analysis using a kernel approach
-
Baudat G., Anouar F. Generalized discriminant analysis using a kernel approach. Neural Comput. 2000, 12:2385-2404.
-
(2000)
Neural Comput.
, vol.12
, pp. 2385-2404
-
-
Baudat, G.1
Anouar, F.2
-
29
-
-
0036505670
-
A comparison of methods for multiclass support vector machines,
-
Hsu C.W., Lin C.J. A comparison of methods for multiclass support vector machines,. IEEE Trans. Neural Network 2002, 13:415-425.
-
(2002)
IEEE Trans. Neural Network
, vol.13
, pp. 415-425
-
-
Hsu, C.W.1
Lin, C.J.2
-
31
-
-
79955779744
-
PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs
-
Xuan P., Guo M., Liu X., Huang Y., Li W. PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. Bioinformatics 2011, 27:1368-1376.
-
(2011)
Bioinformatics
, vol.27
, pp. 1368-1376
-
-
Xuan, P.1
Guo, M.2
Liu, X.3
Huang, Y.4
Li, W.5
-
32
-
-
0042972838
-
A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores
-
Anderson D., Li W., Payan D.G., Noble W.S. A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores. J. Proteomic Res. 2003, 2:137-146.
-
(2003)
J. Proteomic Res.
, vol.2
, pp. 137-146
-
-
Anderson, D.1
Li, W.2
Payan, D.G.3
Noble, W.S.4
-
33
-
-
33846650692
-
Distinguishing cancer-associated missense mutations from common polymorphisms
-
Kaminker J.S., Zhang Y., Waugh A., Haverty P.M., Peters B., Sebisanovic D., Stinson J., Forrest W.F., Bazan J.F., Seshagiri S. Distinguishing cancer-associated missense mutations from common polymorphisms. Cancer Res. 2007, 67:465.
-
(2007)
Cancer Res.
, vol.67
, pp. 465
-
-
Kaminker, J.S.1
Zhang, Y.2
Waugh, A.3
Haverty, P.M.4
Peters, B.5
Sebisanovic, D.6
Stinson, J.7
Forrest, W.F.8
Bazan, J.F.9
Seshagiri, S.10
-
34
-
-
18544375333
-
MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
-
Armstrong S.A., Staunton J.E., Silverman L.B., Pieters R., den Boer M.L., Minden M.D., Sallan S.E., Lander E.S., Golub T.R., Korsmeyer S.J. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 2002, 30:41-47.
-
(2002)
Nat. Genet.
, vol.30
, pp. 41-47
-
-
Armstrong, S.A.1
Staunton, J.E.2
Silverman, L.B.3
Pieters, R.4
den Boer, M.L.5
Minden, M.D.6
Sallan, S.E.7
Lander, E.S.8
Golub, T.R.9
Korsmeyer, S.J.10
-
35
-
-
80053332419
-
Gaussian kernel optimization: Complex problem and a simple solution
-
Yin J.B., Li T., Shen H.B. Gaussian kernel optimization: Complex problem and a simple solution. Neurocomputing 2011, 74:3816-3822.
-
(2011)
Neurocomputing
, vol.74
, pp. 3816-3822
-
-
Yin, J.B.1
Li, T.2
Shen, H.B.3
-
36
-
-
84867893413
-
-
A practical guide to support vector classification
-
C.W. Hsu, C.C. Chang, C.J. Lin, A practical guide to support vector classification, 2003,. http://www.csie.ntu.edu.tw/~cjlin/%20papers/guide/guide.pdf.
-
(2003)
-
-
Hsu, C.W.1
Chang, C.C.2
Lin, C.J.3
|