메뉴 건너뛰기




Volumn 99, Issue , 2013, Pages 307-315

GFO: A data driven approach for optimizing the Gaussian function based similarity metric in computational biology

Author keywords

Bioinformatics; Gaussian function similarity; GFO; Supervised learning; Unsupervised learning

Indexed keywords

BIOINFORMATICS APPLICATIONS; COMPUTATIONAL BIOLOGY; DATA SET SIZE; DATA SETS; DATA-DRIVEN APPROACH; GAUSSIAN FUNCTIONS; GAUSSIAN KERNELS; GFO; GRID SCALE; GRID SEARCH; OPTIMAL CHOICE; OPTIMAL VALUES; SCALAR PARAMETERS; SIMILARITY METRICS; TRIAL AND ERROR;

EID: 84867869093     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.07.003     Document Type: Article
Times cited : (12)

References (36)
  • 1
    • 2342475726 scopus 로고    scopus 로고
    • Protein ranking: from local to global structure in the protein similarity network
    • Weston A.E.J., Zhou D., Leslie C.S., Noble W.S. Protein ranking: from local to global structure in the protein similarity network. Proc. Natl. Acad. Sci. USA 2004, 101:6559-6563.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 6559-6563
    • Weston, A.E.J.1    Zhou, D.2    Leslie, C.S.3    Noble, W.S.4
  • 2
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T.S., Cristianini N., Duffy N., Bednarski D.W., Schummer M., Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16:906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 3
    • 80051490632 scopus 로고    scopus 로고
    • Improving protein structure prediction using multiple sequence-based contact predictions
    • Wu S., Szilagyi A., Zhang Y. Improving protein structure prediction using multiple sequence-based contact predictions. Structure 2011, 19:1182-1191.
    • (2011) Structure , vol.19 , pp. 1182-1191
    • Wu, S.1    Szilagyi, A.2    Zhang, Y.3
  • 4
    • 41349114023 scopus 로고    scopus 로고
    • A comprehensive assessment of sequence-based and template-based methods for protein contact prediction
    • Wu S., Zhang Y. A comprehensive assessment of sequence-based and template-based methods for protein contact prediction. Bioinformatics 2008, 24:924-931.
    • (2008) Bioinformatics , vol.24 , pp. 924-931
    • Wu, S.1    Zhang, Y.2
  • 5
    • 33748449804 scopus 로고    scopus 로고
    • Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition
    • Wang S.Q., Yang J., Chou K.C. Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition. J. Theor. Biol. 2006, 242:941-946.
    • (2006) J. Theor. Biol. , vol.242 , pp. 941-946
    • Wang, S.Q.1    Yang, J.2    Chou, K.C.3
  • 6
    • 80052204561 scopus 로고    scopus 로고
    • Structural Protein Descriptors in 1-Dimension and their Sequence-Based Predictions
    • Kurgan L., Miri Disfani F. Structural Protein Descriptors in 1-Dimension and their Sequence-Based Predictions. Curr. Protein. Pept. Sci. 2011, 12:470-489.
    • (2011) Curr. Protein. Pept. Sci. , vol.12 , pp. 470-489
    • Kurgan, L.1    Miri Disfani, F.2
  • 7
    • 77956502766 scopus 로고    scopus 로고
    • Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources
    • Mizianty M.J., Stach W., Chen K., Kedarisetti K.D., Disfani F.M., Kurgan L. Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. Bioinformatics 2010, 26:i489-i496.
    • (2010) Bioinformatics , vol.26
    • Mizianty, M.J.1    Stach, W.2    Chen, K.3    Kedarisetti, K.D.4    Disfani, F.M.5    Kurgan, L.6
  • 8
    • 58149269554 scopus 로고    scopus 로고
    • Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs
    • Chen K., Jiang Y., Du L., Kurgan L. Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs. J. Comput. Chem. 2009, 30:163-172.
    • (2009) J. Comput. Chem. , vol.30 , pp. 163-172
    • Chen, K.1    Jiang, Y.2    Du, L.3    Kurgan, L.4
  • 9
    • 41049110433 scopus 로고    scopus 로고
    • Functional discrimination of membrane proteins using machine learning techniques
    • Gromiha M.M., Yabuki Y. Functional discrimination of membrane proteins using machine learning techniques. BMC Bioinformatics 2008, 9:135.
    • (2008) BMC Bioinformatics , vol.9 , pp. 135
    • Gromiha, M.M.1    Yabuki, Y.2
  • 10
    • 39749148317 scopus 로고    scopus 로고
    • Discrimination of mesophilic and thermophilic proteins using machine learning algorithms
    • Gromiha M.M., Suresh M.X. Discrimination of mesophilic and thermophilic proteins using machine learning algorithms. Proteins Struct. Funct. Bioinformatics 2008, 70:1274-1279.
    • (2008) Proteins Struct. Funct. Bioinformatics , vol.70 , pp. 1274-1279
    • Gromiha, M.M.1    Suresh, M.X.2
  • 11
    • 34547224599 scopus 로고    scopus 로고
    • Predicting protein N-glycosylation by combining functional domain and secretion information
    • Li S., Liu B., Cai Y., Li Y. Predicting protein N-glycosylation by combining functional domain and secretion information. J. Biomol. Struct. Dyn. 2007, 25:49-54.
    • (2007) J. Biomol. Struct. Dyn. , vol.25 , pp. 49-54
    • Li, S.1    Liu, B.2    Cai, Y.3    Li, Y.4
  • 12
    • 34447309058 scopus 로고    scopus 로고
    • De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures
    • Ng K.L.S., Mishra S.K. De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 2007, 23:1321-1330.
    • (2007) Bioinformatics , vol.23 , pp. 1321-1330
    • Ng, K.L.S.1    Mishra, S.K.2
  • 13
    • 75749156538 scopus 로고    scopus 로고
    • Structural analysis of regulatory DNA sequences using grammar inference and Support Vector Machine
    • Damasevicius R. Structural analysis of regulatory DNA sequences using grammar inference and Support Vector Machine. Neurocomputing 2010, 73:633-638.
    • (2010) Neurocomputing , vol.73 , pp. 633-638
    • Damasevicius, R.1
  • 14
    • 1542346418 scopus 로고    scopus 로고
    • A novel method for protein secondary structure prediction using dual-layer SVM and profiles,
    • Guo J., Chen H., Sun Z., Lin Y. A novel method for protein secondary structure prediction using dual-layer SVM and profiles,. Proteins Struct. Funct. Bioinformatics 2004, 54:738-743.
    • (2004) Proteins Struct. Funct. Bioinformatics , vol.54 , pp. 738-743
    • Guo, J.1    Chen, H.2    Sun, Z.3    Lin, Y.4
  • 15
    • 58149284018 scopus 로고    scopus 로고
    • Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments
    • Zheng C., Kurgan L. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments. BMC Bioinformatics 2008, 9:430.
    • (2008) BMC Bioinformatics , vol.9 , pp. 430
    • Zheng, C.1    Kurgan, L.2
  • 16
    • 0742271712 scopus 로고    scopus 로고
    • Combining protein secondary structure prediction models with ensemble methods of optimal complexity
    • Guermeur Y., Pollastri G., Elisseeff A., Zelus D., Paugam-Moisy H., Baldi P. Combining protein secondary structure prediction models with ensemble methods of optimal complexity. Neurocomputing 2004, 56:305-327.
    • (2004) Neurocomputing , vol.56 , pp. 305-327
    • Guermeur, Y.1    Pollastri, G.2    Elisseeff, A.3    Zelus, D.4    Paugam-Moisy, H.5    Baldi, P.6
  • 18
    • 0037195776 scopus 로고    scopus 로고
    • Using functional domain composition and support vector machines for prediction of protein subcellular location
    • Chou K.C., Cai Y.D. Using functional domain composition and support vector machines for prediction of protein subcellular location. J. Biol. Chem. 2002, 277:45765-45769.
    • (2002) J. Biol. Chem. , vol.277 , pp. 45765-45769
    • Chou, K.C.1    Cai, Y.D.2
  • 19
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization prediction
    • Hua S., Sun Z. Support vector machine approach for protein subcellular localization prediction. Bioinformatics 2001, 17:721-728.
    • (2001) Bioinformatics , vol.17 , pp. 721-728
    • Hua, S.1    Sun, Z.2
  • 20
    • 46049083380 scopus 로고    scopus 로고
    • Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins
    • Niu B., Jin Y.H., Feng K.Y., Lu W.C., Cai Y.D., Li G.Z. Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins. Mol. Diversity 2008, 12:41-45.
    • (2008) Mol. Diversity , vol.12 , pp. 41-45
    • Niu, B.1    Jin, Y.H.2    Feng, K.Y.3    Lu, W.C.4    Cai, Y.D.5    Li, G.Z.6
  • 21
    • 28444448722 scopus 로고    scopus 로고
    • Discrimination of outer membrane proteins using support vector machines
    • Park K.J., Gromiha M.M., Horton P., Suwa M. Discrimination of outer membrane proteins using support vector machines. Bioinformatics 2005, 21:4223-4229.
    • (2005) Bioinformatics , vol.21 , pp. 4223-4229
    • Park, K.J.1    Gromiha, M.M.2    Horton, P.3    Suwa, M.4
  • 22
    • 0034697980 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins based on their N-terminal amino acid sequence
    • Emanuelsson O., Nielsen H., Brunak S., von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000, 300:1005-1016.
    • (2000) J. Mol. Biol. , vol.300 , pp. 1005-1016
    • Emanuelsson, O.1    Nielsen, H.2    Brunak, S.3    von Heijne, G.4
  • 23
    • 0842326624 scopus 로고    scopus 로고
    • Application of SVM to predict membrane protein types
    • Cai Y.D., Ricardo P.W., Jen C.H., Chou K.C. Application of SVM to predict membrane protein types. J. Theor. Biol. 2004, 226:373-376.
    • (2004) J. Theor. Biol. , vol.226 , pp. 373-376
    • Cai, Y.D.1    Ricardo, P.W.2    Jen, C.H.3    Chou, K.C.4
  • 24
    • 78649756877 scopus 로고    scopus 로고
    • Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition
    • Hayat M., Khan A. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition. J. Theor. Biol. 2011, 271:10-17.
    • (2011) J. Theor. Biol. , vol.271 , pp. 10-17
    • Hayat, M.1    Khan, A.2
  • 25
    • 78650611734 scopus 로고    scopus 로고
    • A multi-stage automatic arrhythmia recognition and classification system
    • Kutlu Y., Kuntalp D. A multi-stage automatic arrhythmia recognition and classification system. Comput. Biol. Med. 2011, 41:37-45.
    • (2011) Comput. Biol. Med. , vol.41 , pp. 37-45
    • Kutlu, Y.1    Kuntalp, D.2
  • 26
    • 33846923287 scopus 로고    scopus 로고
    • In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using the Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors
    • Jensen B.F., Vind C., Padkjær S.B., Brockhoff P.B., Refsgaard H.H.F. In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using the Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors. J. Med. Chem. 2007, 50:501-511.
    • (2007) J. Med. Chem. , vol.50 , pp. 501-511
    • Jensen, B.F.1    Vind, C.2    Padkjær, S.B.3    Brockhoff, P.B.4    Refsgaard, H.H.F.5
  • 28
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • Baudat G., Anouar F. Generalized discriminant analysis using a kernel approach. Neural Comput. 2000, 12:2385-2404.
    • (2000) Neural Comput. , vol.12 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 29
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines,
    • Hsu C.W., Lin C.J. A comparison of methods for multiclass support vector machines,. IEEE Trans. Neural Network 2002, 13:415-425.
    • (2002) IEEE Trans. Neural Network , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 31
    • 79955779744 scopus 로고    scopus 로고
    • PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs
    • Xuan P., Guo M., Liu X., Huang Y., Li W. PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. Bioinformatics 2011, 27:1368-1376.
    • (2011) Bioinformatics , vol.27 , pp. 1368-1376
    • Xuan, P.1    Guo, M.2    Liu, X.3    Huang, Y.4    Li, W.5
  • 32
    • 0042972838 scopus 로고    scopus 로고
    • A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores
    • Anderson D., Li W., Payan D.G., Noble W.S. A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores. J. Proteomic Res. 2003, 2:137-146.
    • (2003) J. Proteomic Res. , vol.2 , pp. 137-146
    • Anderson, D.1    Li, W.2    Payan, D.G.3    Noble, W.S.4
  • 35
    • 80053332419 scopus 로고    scopus 로고
    • Gaussian kernel optimization: Complex problem and a simple solution
    • Yin J.B., Li T., Shen H.B. Gaussian kernel optimization: Complex problem and a simple solution. Neurocomputing 2011, 74:3816-3822.
    • (2011) Neurocomputing , vol.74 , pp. 3816-3822
    • Yin, J.B.1    Li, T.2    Shen, H.B.3
  • 36
    • 84867893413 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • C.W. Hsu, C.C. Chang, C.J. Lin, A practical guide to support vector classification, 2003,. http://www.csie.ntu.edu.tw/~cjlin/%20papers/guide/guide.pdf.
    • (2003)
    • Hsu, C.W.1    Chang, C.C.2    Lin, C.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.