메뉴 건너뛰기




Volumn 16, Issue 12, 2009, Pages 1447-1454

Robust prediction of B-factor profile from sequence using two-stage SVR based on random forest feature selection

Author keywords

B factor; Packing density; PredBF; Protein effective length; Pssm; Random forest; Residue flexibility; Sequence evolution; Two layer SVR

Indexed keywords

PROTEIN;

EID: 73449096798     PISSN: 09298665     EISSN: None     Source Type: Journal    
DOI: 10.2174/092986609789839250     Document Type: Article
Times cited : (69)

References (75)
  • 2
    • 34249716750 scopus 로고    scopus 로고
    • Coman, R. M.; Robbins, A.; Goodenow, M. M.; McKenna, R.; Dunn, B. M. Expression, purification and preliminary X-ray crystallographic studies of the human immunodeficiency virus 1 subtype C protease. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun., 2007, 63 (Pt 4), 320-323.
    • Coman, R. M.; Robbins, A.; Goodenow, M. M.; McKenna, R.; Dunn, B. M. Expression, purification and preliminary X-ray crystallographic studies of the human immunodeficiency virus 1 subtype C protease. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun., 2007, 63 (Pt 4), 320-323.
  • 3
    • 38749106195 scopus 로고    scopus 로고
    • Structure and mechanism of the M2 proton channel of influenza A virus
    • Schnell, J. R.; Chou, J. J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 2008, 451 (7178), 591-595.
    • (2008) Nature , vol.451 , Issue.7178 , pp. 591-595
    • Schnell, J.R.1    Chou, J.J.2
  • 4
    • 0015859467 scopus 로고
    • Principles that govern the folding of protein chains
    • Anfinsen, C. B. Principles that govern the folding of protein chains. Science, 1973, 181 (96), 223-230.
    • (1973) Science , vol.181 , Issue.96 , pp. 223-230
    • Anfinsen, C.B.1
  • 6
    • 34247567205 scopus 로고    scopus 로고
    • Predicting experimental properties of proteins from sequence by machine learning techniques
    • Smialowski, P.; Martin-Galiano, A. J.; Cox, J.; Frishman, D. Predicting experimental properties of proteins from sequence by machine learning techniques. Curr. Protein Pept. Sci., 2007, 8 (2), 121-133.
    • (2007) Curr. Protein Pept. Sci , vol.8 , Issue.2 , pp. 121-133
    • Smialowski, P.1    Martin-Galiano, A.J.2    Cox, J.3    Frishman, D.4
  • 7
    • 0029996162 scopus 로고    scopus 로고
    • Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence
    • Frishman, D.; Argos, P. Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng., 1996, 9 (2), 133-142.
    • (1996) Protein Eng , vol.9 , Issue.2 , pp. 133-142
    • Frishman, D.1    Argos, P.2
  • 8
    • 61449123967 scopus 로고    scopus 로고
    • Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network
    • Faraggi, E.; Xue, B.; Zhou, Y. Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network. Proteins, 2009, 74 (4), 847-856.
    • (2009) Proteins , vol.74 , Issue.4 , pp. 847-856
    • Faraggi, E.1    Xue, B.2    Zhou, Y.3
  • 9
    • 26444473604 scopus 로고    scopus 로고
    • Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure
    • Garg, A.; Kaur, H.; Raghava, G. P. Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure. Proteins, 2005, 61 (2), 318-324.
    • (2005) Proteins , vol.61 , Issue.2 , pp. 318-324
    • Garg, A.1    Kaur, H.2    Raghava, G.P.3
  • 10
    • 48749084114 scopus 로고    scopus 로고
    • MemBrain: Improving the accuracy of predicting transmembrane helices
    • Shen, H.; Chou, J. J. MemBrain: improving the accuracy of predicting transmembrane helices. PLoS ONE, 2008, 3 (6), e2399.
    • (2008) PLoS ONE , vol.3 , Issue.6
    • Shen, H.1    Chou, J.J.2
  • 11
    • 84934439235 scopus 로고    scopus 로고
    • Neural networks predict protein structure and function
    • Punta, M.; Rost, B. Neural networks predict protein structure and function. Methods Mol. Biol., 2008, 458, 203-230.
    • (2008) Methods Mol. Biol , vol.458 , pp. 203-230
    • Punta, M.1    Rost, B.2
  • 12
    • 36049029967 scopus 로고    scopus 로고
    • High-resolution structure prediction and the crystallographic phase problem
    • Qian, B.; Raman, S.; Das, R.; Bradley, P.; McCoy, A. J.; Read, R. J.; Baker, D. High-resolution structure prediction and the crystallographic phase problem. Nature, 2007, 450 (7167), 259-264.
    • (2007) Nature , vol.450 , Issue.7167 , pp. 259-264
    • Qian, B.1    Raman, S.2    Das, R.3    Bradley, P.4    McCoy, A.J.5    Read, R.J.6    Baker, D.7
  • 13
    • 0035812694 scopus 로고    scopus 로고
    • Protein structure prediction and structural genomics
    • Baker, D.; Sali, A. Protein structure prediction and structural genomics. Science, 2001, 294 (5540), 93-96.
    • (2001) Science , vol.294 , Issue.5540 , pp. 93-96
    • Baker, D.1    Sali, A.2
  • 14
    • 34249683488 scopus 로고    scopus 로고
    • Membrane protein structure: Prediction versus reality
    • Elofsson, A.; von Heijne, G. Membrane protein structure: prediction versus reality. Annu. Rev. Biochem., 2007, 76, 125-140.
    • (2007) Annu. Rev. Biochem , vol.76 , pp. 125-140
    • Elofsson, A.1    von Heijne, G.2
  • 15
    • 36549021546 scopus 로고    scopus 로고
    • Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure
    • Song, J.; Yuan, Z.; Tan, H.; Huber, T.; Burrage, K. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure. Bioinformatics, 2007, 23 (23), 3147-3154.
    • (2007) Bioinformatics , vol.23 , Issue.23 , pp. 3147-3154
    • Song, J.1    Yuan, Z.2    Tan, H.3    Huber, T.4    Burrage, K.5
  • 16
    • 65349193478 scopus 로고    scopus 로고
    • Protein classification combining surface analysis and primary structure
    • Nanni, L.; Mazzara, S.; Pattini, L.; Lumini, A. Protein classification combining surface analysis and primary structure. Protein Eng. Des. Sel., 2009, 22 (4), 267-272.
    • (2009) Protein Eng. Des. Sel , vol.22 , Issue.4 , pp. 267-272
    • Nanni, L.1    Mazzara, S.2    Pattini, L.3    Lumini, A.4
  • 17
    • 65349179597 scopus 로고    scopus 로고
    • Structure prediction of neuroendocrine convertas.-2: A potential target in various cancers
    • Aparoy, P.; Chatterjee, M.; Guruprasad, L.; Reddanna, P. Structure prediction of neuroendocrine convertas.-2: a potential target in various cancers. Protein Pept. Lett., 2009, 16 (4), 383-391.
    • (2009) Protein Pept. Lett , vol.16 , Issue.4 , pp. 383-391
    • Aparoy, P.1    Chatterjee, M.2    Guruprasad, L.3    Reddanna, P.4
  • 18
    • 45749156730 scopus 로고    scopus 로고
    • Analysis of protein surface patterns by pocket similarity network
    • Liu, Z. P.; Wu, L. Y.; Wang, Y.; Zhang, X. S.; Chen, L. Analysis of protein surface patterns by pocket similarity network. Protein Pept. Lett., 2008, 15 (5), 448-455.
    • (2008) Protein Pept. Lett , vol.15 , Issue.5 , pp. 448-455
    • Liu, Z.P.1    Wu, L.Y.2    Wang, Y.3    Zhang, X.S.4    Chen, L.5
  • 19
    • 26844545834 scopus 로고    scopus 로고
    • Progress in protein structural class prediction and its impact to bioinformatics and proteomics
    • Chou, K. C. Progress in protein structural class prediction and its impact to bioinformatics and proteomics. Curr. Protein Pept. Sci., 2005, 6 (5), 423-436.
    • (2005) Curr. Protein Pept. Sci , vol.6 , Issue.5 , pp. 423-436
    • Chou, K.C.1
  • 20
    • 0029157083 scopus 로고
    • Prediction of protein structural classes
    • Chou, K. C.; Zhang, C. T. Prediction of protein structural classes. Crit. Rev. Biochem. Mol. Biol., 1995, 30 (4), 275-349.
    • (1995) Crit. Rev. Biochem. Mol. Biol , vol.30 , Issue.4 , pp. 275-349
    • Chou, K.C.1    Zhang, C.T.2
  • 21
    • 0038304992 scopus 로고    scopus 로고
    • Support vector machine for predicting alpha-turn types
    • Cai, Y. D.; Feng, K. Y.; Li, Y. X.; Chou, K. C. Support vector machine for predicting alpha-turn types. Peptides, 2003, 24 (4), 629-630.
    • (2003) Peptides , vol.24 , Issue.4 , pp. 629-630
    • Cai, Y.D.1    Feng, K.Y.2    Li, Y.X.3    Chou, K.C.4
  • 22
    • 0036007085 scopus 로고    scopus 로고
    • Prediction of protein structural classes by support vector machines
    • Cai, Y. D.; Liu, X. J.; Xu, X. B.; Chou, K. C. Prediction of protein structural classes by support vector machines. Comput. Chem., 2002, 26 (3), 293-296.
    • (2002) Comput. Chem , vol.26 , Issue.3 , pp. 293-296
    • Cai, Y.D.1    Liu, X.J.2    Xu, X.B.3    Chou, K.C.4
  • 23
    • 33646036734 scopus 로고    scopus 로고
    • Two-stage support vector regression approach for predicting accessible surface areas of amino acids
    • Nguyen, M. N.; Rajapakse, J. C. Two-stage support vector regression approach for predicting accessible surface areas of amino acids. Proteins, 2006, 63 (3), 542-550.
    • (2006) Proteins , vol.63 , Issue.3 , pp. 542-550
    • Nguyen, M.N.1    Rajapakse, J.C.2
  • 24
    • 46449128812 scopus 로고    scopus 로고
    • Prediction of protein structural class using novel evolutionary collocation-based sequence representation
    • Chen, K.; Kurgan, L. A.; Ruan, J. Prediction of protein structural class using novel evolutionary collocation-based sequence representation. J. Comput. Chem., 2008, 29 (10), 1596-1604.
    • (2008) J. Comput. Chem , vol.29 , Issue.10 , pp. 1596-1604
    • Chen, K.1    Kurgan, L.A.2    Ruan, J.3
  • 25
    • 44949145113 scopus 로고    scopus 로고
    • Progress and challenges in protein structure prediction
    • Zhang, Y. Progress and challenges in protein structure prediction. Curr. Opin. Struct. Biol., 2008, 18 (3), 342-348.
    • (2008) Curr. Opin. Struct. Biol , vol.18 , Issue.3 , pp. 342-348
    • Zhang, Y.1
  • 26
    • 33646871614 scopus 로고    scopus 로고
    • An ensemble of K-local hyperplanes for predicting protein-protein interactions
    • Nanni, L.; Lumini, A. An ensemble of K-local hyperplanes for predicting protein-protein interactions. Bioinformatics, 2006, 22 (10), 1207-1210.
    • (2006) Bioinformatics , vol.22 , Issue.10 , pp. 1207-1210
    • Nanni, L.1    Lumini, A.2
  • 27
    • 33846069758 scopus 로고    scopus 로고
    • Nanni, L.; Lumini, A. Ensemblator: An ensemble of classifiers for reliable classification of biological data. Pattern Recogn. Lett., 2007, 28 (5), 622-630.
    • Nanni, L.; Lumini, A. Ensemblator: An ensemble of classifiers for reliable classification of biological data. Pattern Recogn. Lett., 2007, 28 (5), 622-630.
  • 28
    • 0022555901 scopus 로고
    • Study of protein dynamics by X-ray diffraction
    • Ringe, D.; Petsko, G. A. Study of protein dynamics by X-ray diffraction. Methods Enzymol., 1986, 131, 389-433.
    • (1986) Methods Enzymol , vol.131 , pp. 389-433
    • Ringe, D.1    Petsko, G.A.2
  • 29
    • 84885949386 scopus 로고    scopus 로고
    • Improved disorder prediction by combination of orthogonal approaches
    • Schlessinger, A.; Punta, M.; Yachdav, G.; Kajan, L.; Rost, B. Improved disorder prediction by combination of orthogonal approaches. PLoS One, 2009, 4 (2), e4433.
    • (2009) PLoS One , vol.4 , Issue.2
    • Schlessinger, A.1    Punta, M.2    Yachdav, G.3    Kajan, L.4    Rost, B.5
  • 30
    • 34249699005 scopus 로고    scopus 로고
    • Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs
    • Chen, K.; Kurgan, L. A.; Ruan, J. Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs. BMC Struct. Biol., 2007, 7, 25.
    • (2007) BMC Struct. Biol , vol.7 , pp. 25
    • Chen, K.1    Kurgan, L.A.2    Ruan, J.3
  • 31
    • 0023557882 scopus 로고
    • Relationship of protein flexibility to thermostability
    • Vihinen, M. Relationship of protein flexibility to thermostability. Protein Eng., 1987, 1 (6), 477-480.
    • (1987) Protein Eng , vol.1 , Issue.6 , pp. 477-480
    • Vihinen, M.1
  • 32
    • 0037316987 scopus 로고    scopus 로고
    • Flexibility analysis of enzyme active sites by crystallographic temperature factors
    • Yuan, Z.; Zhao, J.; Wang, Z. X. Flexibility analysis of enzyme active sites by crystallographic temperature factors. Protein Eng., 2003, 16 (2), 109-114.
    • (2003) Protein Eng , vol.16 , Issue.2 , pp. 109-114
    • Yuan, Z.1    Zhao, J.2    Wang, Z.X.3
  • 33
    • 13944277320 scopus 로고    scopus 로고
    • Prediction of protein B-factor profiles
    • Yuan, Z.; Bailey, T. L.; Teasdale, R. D. Prediction of protein B-factor profiles. Proteins, 2005, 58 (4), 905-912.
    • (2005) Proteins , vol.58 , Issue.4 , pp. 905-912
    • Yuan, Z.1    Bailey, T.L.2    Teasdale, R.D.3
  • 34
    • 0035996990 scopus 로고    scopus 로고
    • Dynamics of proteins in crystals: Comparison of experiment with simple models
    • Kundu, S.; Melton, J. S.; Sorensen, D. C.; Phillips, G. N. Dynamics of proteins in crystals: Comparison of experiment with simple models. Biophys. J., 2002, 83 (2), 723-732.
    • (2002) Biophys. J , vol.83 , Issue.2 , pp. 723-732
    • Kundu, S.1    Melton, J.S.2    Sorensen, D.C.3    Phillips, G.N.4
  • 35
    • 0037173062 scopus 로고    scopus 로고
    • How to describe protein motion without amino acid sequence and atomic coordinates
    • Ming, D.; Kong, Y.; Lambert, M. A.; Huang, Z.; Ma, J. How to describe protein motion without amino acid sequence and atomic coordinates. Proc. Natl. Acad. Sci. USA, 2002, 99 (13), 8620-8625.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , Issue.13 , pp. 8620-8625
    • Ming, D.1    Kong, Y.2    Lambert, M.A.3    Huang, Z.4    Ma, J.5
  • 36
    • 42749091409 scopus 로고    scopus 로고
    • Protein conformational flexibility prediction using machine learning
    • Trott, O.; Siggers, K.; Rost, B.; Palmer, A. G.; 3rd, Protein conformational flexibility prediction using machine learning. J. Magn. Reson., 2008, 192 (1), 37-47.
    • (2008) J. Magn. Reson , vol.192 , Issue.1 , pp. 37-47
    • Trott, O.1    Siggers, K.2    Rost, B.3    Palmer 3rd, A.G.4
  • 37
    • 68049143439 scopus 로고    scopus 로고
    • On the relation between residue flexibility and local solvent accessibility in proteins
    • Zhang, H.; Zhang, T.; Chen, K.; Shen, S.; Ruan, J.; Kurgan, L. On the relation between residue flexibility and local solvent accessibility in proteins. Proteins, 2009, 76 (3), 617-36.
    • (2009) Proteins , vol.76 , Issue.3 , pp. 617-636
    • Zhang, H.1    Zhang, T.2    Chen, K.3    Shen, S.4    Ruan, J.5    Kurgan, L.6
  • 38
    • 0037022347 scopus 로고    scopus 로고
    • Flexibility and packing in proteins
    • Halle, B. Flexibility and packing in proteins. Proc. Natl. Acad. Sci. USA, 2002, 99 (3), 1274-1279.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , Issue.3 , pp. 1274-1279
    • Halle, B.1
  • 39
    • 24344503079 scopus 로고    scopus 로고
    • Protein flexibility and rigidity predicted from sequence
    • Schlessinger, A.; Rost, B. Protein flexibility and rigidity predicted from sequence. Proteins, 2005, 61 (1), 115-126.
    • (2005) Proteins , vol.61 , Issue.1 , pp. 115-126
    • Schlessinger, A.1    Rost, B.2
  • 40
    • 77149173158 scopus 로고    scopus 로고
    • Protein sumoylation sites prediction based on two-stage feature selection
    • Epub ahead of print
    • Lu, L.; Shi, X. H.; Li, S. J.; Xie, Z. Q.; Feng, Y. L.; Lu, W. C.; Li, Y. X.; Li, H.; Cai, Y. D. Protein sumoylation sites prediction based on two-stage feature selection. Mol. Divers., 2009, [Epub ahead of print].
    • (2009) Mol. Divers
    • Lu, L.1    Shi, X.H.2    Li, S.J.3    Xie, Z.Q.4    Feng, Y.L.5    Lu, W.C.6    Li, Y.X.7    Li, H.8    Cai, Y.D.9
  • 41
    • 67650501848 scopus 로고    scopus 로고
    • Estimation of distribution algorithms as logistic regression regularizers of microarray classifiers. Methods Inf
    • Bielza, C.; Robles, V.; Larranaga, P. Estimation of distribution algorithms as logistic regression regularizers of microarray classifiers. Methods Inf. M ed., 2009, 48 (3), 236-241.
    • (2009) M ed , vol.48 , Issue.3 , pp. 236-241
    • Bielza, C.1    Robles, V.2    Larranaga, P.3
  • 42
    • 65549143555 scopus 로고    scopus 로고
    • Bayesian clustering and feature selection for cancer tissue samples
    • Marttinen, P.; Myllykangas, S.; Corander, J. Bayesian clustering and feature selection for cancer tissue samples. BMC Bioinform., 2009, 10, 90.
    • (2009) BMC Bioinform , vol.10 , pp. 90
    • Marttinen, P.1    Myllykangas, S.2    Corander, J.3
  • 43
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y.; Inza, I.; Larranaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics, 2007, 23 (19), 2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 44
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu, H.; Yu, L. Toward integrating feature selection algorithms for classification and clustering. Ieee Trans. Know. Data Eng., 2005, 17 (4), 491-502.
    • (2005) Ieee Trans. Know. Data Eng , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 45
    • 33947220823 scopus 로고    scopus 로고
    • Feature subset selection and ranking for data dimensionality reduction
    • Wei, H. L.; Billings, S. A. Feature subset selection and ranking for data dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29 (1), 162-166.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell , vol.29 , Issue.1 , pp. 162-166
    • Wei, H.L.1    Billings, S.A.2
  • 47
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol., 1999, 292 (2), 195-202.
    • (1999) J. Mol. Biol , vol.292 , Issue.2 , pp. 195-202
    • Jones, D.T.1
  • 48
    • 2942689229 scopus 로고    scopus 로고
    • Prediction of protein folding rates from the amino acid sequence-predicted secondary structure
    • Ivankov, D. N.; Finkelstein, A. V. Prediction of protein folding rates from the amino acid sequence-predicted secondary structure. Proc. Natl. Acad. Sci. USA, 2004, 101 (24), 8942-8944.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , Issue.24 , pp. 8942-8944
    • Ivankov, D.N.1    Finkelstein, A.V.2
  • 49
    • 85056029311 scopus 로고    scopus 로고
    • Prediction of Residue Status to Be Protected or Not Protected From Hy-drogen Exchange Using Amino Acid Sequence Only
    • Nikita, V. D.; Oxana, V. G. Prediction of Residue Status to Be Protected or Not Protected From Hy-drogen Exchange Using Amino Acid Sequence Only. Open. Biochem. J., 2008, 2, 77-80.
    • (2008) Open. Biochem. J , vol.2 , pp. 77-80
    • Nikita, V.D.1    Oxana, V.G.2
  • 51
    • 0037072718 scopus 로고    scopus 로고
    • Effects of local repositioning of charged surface residues on the kinetics of protein dimerization probed by Brownian dynamics simulations
    • Fisher, E. W.; Rojnuckarin, A.; Kim, S. Effects of local repositioning of charged surface residues on the kinetics of protein dimerization probed by Brownian dynamics simulations. J. Mol. Struct. Theochem., 2002, 592, 37-45.
    • (2002) J. Mol. Struct. Theochem , vol.592 , pp. 37-45
    • Fisher, E.W.1    Rojnuckarin, A.2    Kim, S.3
  • 52
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn., 2001, 45 (1), 5-32.
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 53
    • 0003450542 scopus 로고    scopus 로고
    • 2nd ed. Statistics for engineering and information science, New York: Springer. xix, 314 p
    • Vapnik, V. N. The nature of statistical learning theory. 2nd ed. Statistics for engineering and information science. 2000, New York: Springer. xix, 314 p.
    • (2000) The nature of statistical learning theory
    • Vapnik, V.N.1
  • 55
    • 34548606295 scopus 로고    scopus 로고
    • Recent progress in protein subcellular location prediction
    • Chou, K. C.; Shen, H. B. Recent progress in protein subcellular location prediction. Anal. Biochem., 2007, 370 (1), 1-16.
    • (2007) Anal. Biochem , vol.370 , Issue.1 , pp. 1-16
    • Chou, K.C.1    Shen, H.B.2
  • 57
    • 34548009150 scopus 로고    scopus 로고
    • Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo-amino acid composition
    • Chen, Y. L.; Li, Q. Z. Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo-amino acid composition. J. Theor. Biol., 2007, 248 (2), 377-381.
    • (2007) J. Theor. Biol , vol.248 , Issue.2 , pp. 377-381
    • Chen, Y.L.1    Li, Q.Z.2
  • 58
    • 54249165105 scopus 로고    scopus 로고
    • Toward prediction of binding affinities between the MHC protein and its peptide ligands using quantitative structure-affinity relationship approach
    • Tian, F.; Lv, F.; Zhou, P.; Yang, Q.; Jalbout, A. F. Toward prediction of binding affinities between the MHC protein and its peptide ligands using quantitative structure-affinity relationship approach. Protein Pept. Lett., 2008, 15 (10), 1033-1043.
    • (2008) Protein Pept. Lett , vol.15 , Issue.10 , pp. 1033-1043
    • Tian, F.1    Lv, F.2    Zhou, P.3    Yang, Q.4    Jalbout, A.F.5
  • 59
    • 33947390931 scopus 로고    scopus 로고
    • Prediction of the subcellular location of apoptosis proteins
    • Chen, Y. L.; Li, Q. Z. Prediction of the subcellular location of apoptosis proteins. J. Theor. Biol., 2007, 245 (4), 775-783.
    • (2007) J. Theor. Biol , vol.245 , Issue.4 , pp. 775-783
    • Chen, Y.L.1    Li, Q.Z.2
  • 60
    • 54249116426 scopus 로고    scopus 로고
    • Function prediction of hypothetical proteins without sequence similarity to proteins of known function
    • Kannan, S.; Hauth, A. M.; Burger, G. Function prediction of hypothetical proteins without sequence similarity to proteins of known function. Protein Pept. Lett., 2008, 15 (10), 1107-1116.
    • (2008) Protein Pept. Lett , vol.15 , Issue.10 , pp. 1107-1116
    • Kannan, S.1    Hauth, A.M.2    Burger, G.3
  • 61
    • 36348994911 scopus 로고    scopus 로고
    • Prediction protein structural classes with pseudo-amino acid composition: Approximate entropy and hydrophobicity pattern
    • Zhang, T. L.; Ding, Y. S.; Chou, K. C. Prediction protein structural classes with pseudo-amino acid composition: approximate entropy and hydrophobicity pattern. J. Theor. Biol., 2008, 250 (1), 186-193.
    • (2008) J. Theor. Biol , vol.250 , Issue.1 , pp. 186-193
    • Zhang, T.L.1    Ding, Y.S.2    Chou, K.C.3
  • 62
    • 46849108913 scopus 로고    scopus 로고
    • Prediction of C-to-U RNA editing sites in plant mitochondria using both biochemical and evolutionary information
    • Du, P.; Li, Y. Prediction of C-to-U RNA editing sites in plant mitochondria using both biochemical and evolutionary information. J. Theor. Biol., 2008, 253 (3), 579-586.
    • (2008) J. Theor. Biol , vol.253 , Issue.3 , pp. 579-586
    • Du, P.1    Li, Y.2
  • 63
    • 65349165718 scopus 로고    scopus 로고
    • Prediction of cell wall lytic enzymes using Chou's amphiphilic pseudo amino acid composition
    • Ding, H.; Luo, L.; Lin, H. Prediction of cell wall lytic enzymes using Chou's amphiphilic pseudo amino acid composition. Protein Pept. Lett., 2009, 16 (4), 351-355.
    • (2009) Protein Pept. Lett , vol.16 , Issue.4 , pp. 351-355
    • Ding, H.1    Luo, L.2    Lin, H.3
  • 65
    • 35548967965 scopus 로고    scopus 로고
    • Digital coding of amino acids based on hydrophobic index
    • Xiao, X.; Chou, K. C. Digital coding of amino acids based on hydrophobic index. Protein Pept. Lett., 2007, 14 (9), 871-875.
    • (2007) Protein Pept. Lett , vol.14 , Issue.9 , pp. 871-875
    • Xiao, X.1    Chou, K.C.2
  • 66
    • 41449117926 scopus 로고    scopus 로고
    • Predicting subcellular localization with AdaBoost Learner
    • Jin, Y. H.; Niu, B.; Feng, K. Y.; Lu, W. C.; Cai, Y. D.; Li, G. Z. Predicting subcellular localization with AdaBoost Learner. Protein Pept. Lett., 2008, 15 (3), 286-289.
    • (2008) Protein Pept. Lett , vol.15 , Issue.3 , pp. 286-289
    • Jin, Y.H.1    Niu, B.2    Feng, K.Y.3    Lu, W.C.4    Cai, Y.D.5    Li, G.Z.6
  • 67
    • 33646393287 scopus 로고    scopus 로고
    • Predicting protein structural class with AdaBoost Learner
    • Niu, B.; Cai, Y. D.; Lu, W. C.; Li, G. Z.; Chou, K. C. Predicting protein structural class with AdaBoost Learner. Protein Pept. Lett., 2006, 13 (5), 489-492.
    • (2006) Protein Pept. Lett , vol.13 , Issue.5 , pp. 489-492
    • Niu, B.1    Cai, Y.D.2    Lu, W.C.3    Li, G.Z.4    Chou, K.C.5
  • 68
    • 49449090485 scopus 로고    scopus 로고
    • A protein interaction network analysis for yeast integral membrane protein
    • Shi, M. G.; Huang, D. S.; Li, X. L. A protein interaction network analysis for yeast integral membrane protein. Protein Pept. Lett., 2008, 15 (7), 692-699.
    • (2008) Protein Pept. Lett , vol.15 , Issue.7 , pp. 692-699
    • Shi, M.G.1    Huang, D.S.2    Li, X.L.3
  • 69
    • 52149087297 scopus 로고    scopus 로고
    • Predicting membrane protein types by the LLDA algorithm
    • Wang, T.; Yang, J.; Shen, H. B.; Chou, K. C. Predicting membrane protein types by the LLDA algorithm. Protein Pept. Lett., 2008, 15 (9), 915-921.
    • (2008) Protein Pept. Lett , vol.15 , Issue.9 , pp. 915-921
    • Wang, T.1    Yang, J.2    Shen, H.B.3    Chou, K.C.4
  • 70
    • 62549159517 scopus 로고    scopus 로고
    • Prediction of protein structural classes by recurrence quantification analysis based on chaos game representation
    • Yang, J. Y.; Peng, Z. L.; Yu, Z. G.; Zhang, R. J.; Anh, V.; Wang, D. Prediction of protein structural classes by recurrence quantification analysis based on chaos game representation. J. Theor. Biol., 2009, 257 (4), 618-626.
    • (2009) J. Theor. Biol , vol.257 , Issue.4 , pp. 618-626
    • Yang, J.Y.1    Peng, Z.L.2    Yu, Z.G.3    Zhang, R.J.4    Anh, V.5    Wang, D.6
  • 71
    • 42749090472 scopus 로고    scopus 로고
    • The modified Mahalanobis Discriminant for predicting outer membrane proteins by using Chou's pseudo amino acid composition
    • Lin, H. The modified Mahalanobis Discriminant for predicting outer membrane proteins by using Chou's pseudo amino acid composition. J. Theor. Biol., 2008, 252 (2), 350-356.
    • (2008) J. Theor. Biol , vol.252 , Issue.2 , pp. 350-356
    • Lin, H.1
  • 72
    • 50149119645 scopus 로고    scopus 로고
    • Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices
    • Munteanu, C. R.; Gonzalez-Diaz, H.; Magalhaes, A. L. Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices. J. Theor. Biol., 2008, 254 (2), 476-482.
    • (2008) J. Theor. Biol , vol.254 , Issue.2 , pp. 476-482
    • Munteanu, C.R.1    Gonzalez-Diaz, H.2    Magalhaes, A.L.3
  • 73
    • 52149090972 scopus 로고    scopus 로고
    • Natural/random protein classification models based on star network topological indices
    • Munteanu, C. R.; Gonzalez-Diaz, H.; Borges, F.; de Magalhaes, A. L. Natural/random protein classification models based on star network topological indices. J. Theor. Biol., 2008, 254 (4), 775-783.
    • (2008) J. Theor. Biol , vol.254 , Issue.4 , pp. 775-783
    • Munteanu, C.R.1    Gonzalez-Diaz, H.2    Borges, F.3    de Magalhaes, A.L.4
  • 74
    • 0345548657 scopus 로고    scopus 로고
    • Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Informat. Compt. Sci., 2003, 43 (6), 1947-1958.
    • Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Informat. Compt. Sci., 2003, 43 (6), 1947-1958.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.