-
1
-
-
0022431917
-
DNA methylation in thermophilic bacteria: N4-methylcytosine, 5-methylcytosine, and N6-methyladenine
-
Ehrlich M., et al. DNA methylation in thermophilic bacteria: N4-methylcytosine, 5-methylcytosine, and N6-methyladenine. Nucleic Acids Res. 1985, 13:1399-1412.
-
(1985)
Nucleic Acids Res.
, vol.13
, pp. 1399-1412
-
-
Ehrlich, M.1
-
2
-
-
32344450824
-
Genomic DNA methylation: the mark and its mediators
-
Klose R.J., Bird A.P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 2006, 31:89-97.
-
(2006)
Trends Biochem. Sci.
, vol.31
, pp. 89-97
-
-
Klose, R.J.1
Bird, A.P.2
-
3
-
-
15744401773
-
Eukaryotic cytosine methyltransferases
-
Goll M.G., Bestor T.H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 2005, 74:481-514.
-
(2005)
Annu. Rev. Biochem.
, vol.74
, pp. 481-514
-
-
Goll, M.G.1
Bestor, T.H.2
-
4
-
-
77952355762
-
Genome-wide evolutionary analysis of eukaryotic DNA methylation
-
Zemach A., et al. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 2010, 328:916-919.
-
(2010)
Science
, vol.328
, pp. 916-919
-
-
Zemach, A.1
-
5
-
-
0001875393
-
Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage lambda
-
Arber W., Dussoix D. Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage lambda. J. Mol. Biol. 1962, 5:18-36.
-
(1962)
J. Mol. Biol.
, vol.5
, pp. 18-36
-
-
Arber, W.1
Dussoix, D.2
-
6
-
-
33749246561
-
Epigenetic gene regulation in the bacterial world
-
Casadesus J., Low D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 2006, 70:830-856.
-
(2006)
Microbiol. Mol. Biol. Rev.
, vol.70
, pp. 830-856
-
-
Casadesus, J.1
Low, D.2
-
7
-
-
0022067592
-
Importance of state of methylation of oriC GATC sites in initiation of DNA replication in Escherichia coli
-
Smith D.W., et al. Importance of state of methylation of oriC GATC sites in initiation of DNA replication in Escherichia coli. EMBO J. 1985, 4:1319-1326.
-
(1985)
EMBO J.
, vol.4
, pp. 1319-1326
-
-
Smith, D.W.1
-
8
-
-
0024596295
-
Methyl-directed DNA mismatch correction
-
Modrich P. Methyl-directed DNA mismatch correction. J. Biol. Chem. 1989, 264:6597-6600.
-
(1989)
J. Biol. Chem.
, vol.264
, pp. 6597-6600
-
-
Modrich, P.1
-
9
-
-
77953809924
-
DNA methylation and the formation of heterochromatin in Neurospora crassa
-
Rountree M.R., Selker E.U. DNA methylation and the formation of heterochromatin in Neurospora crassa. Heredity (Edinb.) 2010, 105:38-44.
-
(2010)
Heredity (Edinb.)
, vol.105
, pp. 38-44
-
-
Rountree, M.R.1
Selker, E.U.2
-
10
-
-
77956504685
-
Evolution of eukaryotic DNA methylation and the pursuit of safer sex
-
Zemach A., Zilberman D. Evolution of eukaryotic DNA methylation and the pursuit of safer sex. Curr. Biol. 2010, 20:R780-R785.
-
(2010)
Curr. Biol.
, vol.20
-
-
Zemach, A.1
Zilberman, D.2
-
11
-
-
0036144048
-
DNA methylation patterns and epigenetic memory
-
Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16:6-21.
-
(2002)
Genes Dev.
, vol.16
, pp. 6-21
-
-
Bird, A.1
-
12
-
-
53649088595
-
Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1
-
Avvakumov G.V., et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 2008, 455:822-825.
-
(2008)
Nature
, vol.455
, pp. 822-825
-
-
Avvakumov, G.V.1
-
13
-
-
53649089723
-
The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix
-
Hashimoto H., et al. The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 2008, 455:826-829.
-
(2008)
Nature
, vol.455
, pp. 826-829
-
-
Hashimoto, H.1
-
14
-
-
0023701018
-
Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases
-
Bestor T., et al. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J. Mol. Biol. 1988, 203:971-983.
-
(1988)
J. Mol. Biol.
, vol.203
, pp. 971-983
-
-
Bestor, T.1
-
15
-
-
77249170184
-
Establishing, maintaining and modifying DNA methylation patterns in plants and animals
-
Law J.A., Jacobsen S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010, 11:204-220.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 204-220
-
-
Law, J.A.1
Jacobsen, S.E.2
-
16
-
-
51649098663
-
The evolving functions of DNA methylation
-
Zilberman D. The evolving functions of DNA methylation. Curr. Opin. Plant Biol. 2008, 11:554-559.
-
(2008)
Curr. Opin. Plant Biol.
, vol.11
, pp. 554-559
-
-
Zilberman, D.1
-
17
-
-
78049414227
-
Epigenetic reprogramming in plant and animal development
-
Feng S., et al. Epigenetic reprogramming in plant and animal development. Science 2010, 330:622-627.
-
(2010)
Science
, vol.330
, pp. 622-627
-
-
Feng, S.1
-
18
-
-
59349118366
-
Epigenetic reprogramming and small RNA silencing of transposable elements in pollen
-
Slotkin R.K., et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 2009, 136:461-472.
-
(2009)
Cell
, vol.136
, pp. 461-472
-
-
Slotkin, R.K.1
-
19
-
-
0034598784
-
Demethylation of the zygotic paternal genome
-
Mayer W., et al. Demethylation of the zygotic paternal genome. Nature 2000, 403:501-502.
-
(2000)
Nature
, vol.403
, pp. 501-502
-
-
Mayer, W.1
-
20
-
-
0033523760
-
DNA methyltransferase is actively retained in the cytoplasm during early development
-
Cardoso M.C., Leonhardt H. DNA methyltransferase is actively retained in the cytoplasm during early development. J. Cell Biol. 1999, 147:25-32.
-
(1999)
J. Cell Biol.
, vol.147
, pp. 25-32
-
-
Cardoso, M.C.1
Leonhardt, H.2
-
21
-
-
84859519339
-
Global profiling of DNA methylation erasure in mouse primordial germ cells
-
Guibert S., et al. Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res. 2012, 22:633-641.
-
(2012)
Genome Res.
, vol.22
, pp. 633-641
-
-
Guibert, S.1
-
22
-
-
84871702441
-
The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells
-
Seisenberger S., et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 2012, 48:849-862.
-
(2012)
Mol. Cell
, vol.48
, pp. 849-862
-
-
Seisenberger, S.1
-
23
-
-
0036768615
-
Epigenetic reprogramming in mouse primordial germ cells
-
Hajkova P., et al. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 2002, 117:15-23.
-
(2002)
Mech. Dev.
, vol.117
, pp. 15-23
-
-
Hajkova, P.1
-
24
-
-
12944308793
-
Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice
-
Seki Y., et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev. Biol. 2005, 278:440-458.
-
(2005)
Dev. Biol.
, vol.278
, pp. 440-458
-
-
Seki, Y.1
-
25
-
-
84873570094
-
Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice
-
Kagiwada S., et al. Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J. 2012, 32:340-353.
-
(2012)
EMBO J.
, vol.32
, pp. 340-353
-
-
Kagiwada, S.1
-
26
-
-
0019393572
-
Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos
-
Tam P.P., Snow M.H. Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J. Embryol. Exp. Morphol. 1981, 64:133-147.
-
(1981)
J. Embryol. Exp. Morphol.
, vol.64
, pp. 133-147
-
-
Tam, P.P.1
Snow, M.H.2
-
27
-
-
84873571209
-
The simplest explanation: passive DNA demethylation in PGCs
-
Smith Z.D., Meissner A. The simplest explanation: passive DNA demethylation in PGCs. EMBO J. 2013, 32:318-321.
-
(2013)
EMBO J.
, vol.32
, pp. 318-321
-
-
Smith, Z.D.1
Meissner, A.2
-
28
-
-
84866780162
-
Molecular roadblocks for cellular reprogramming
-
Vierbuchen T., Wernig M. Molecular roadblocks for cellular reprogramming. Mol. Cell 2012, 47:827-838.
-
(2012)
Mol. Cell
, vol.47
, pp. 827-838
-
-
Vierbuchen, T.1
Wernig, M.2
-
29
-
-
84874059035
-
DNA synthesis is required for reprogramming mediated by stem cell fusion
-
Tsubouchi T., et al. DNA synthesis is required for reprogramming mediated by stem cell fusion. Cell 2013, 152:873-883.
-
(2013)
Cell
, vol.152
, pp. 873-883
-
-
Tsubouchi, T.1
-
30
-
-
71449109765
-
Direct cell reprogramming is a stochastic process amenable to acceleration
-
Hanna J., et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 2009, 462:595-601.
-
(2009)
Nature
, vol.462
, pp. 595-601
-
-
Hanna, J.1
-
31
-
-
46449094276
-
Dissecting direct reprogramming through integrative genomic analysis
-
Mikkelsen T.S., et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 2008, 454:49-55.
-
(2008)
Nature
, vol.454
, pp. 49-55
-
-
Mikkelsen, T.S.1
-
32
-
-
0033580326
-
A mammalian protein with specific demethylase activity for mCpG DNA
-
Bhattacharya S.K., et al. A mammalian protein with specific demethylase activity for mCpG DNA. Nature 1999, 397:579-583.
-
(1999)
Nature
, vol.397
, pp. 579-583
-
-
Bhattacharya, S.K.1
-
33
-
-
17444409344
-
Epigenetic reprogramming in mammals
-
Morgan H.D., et al. Epigenetic reprogramming in mammals. Hum. Mol. Genet. 2005, 14:R47-R58.
-
(2005)
Hum. Mol. Genet.
, vol.14
-
-
Morgan, H.D.1
-
34
-
-
0035868824
-
Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development
-
Hendrich B., et al. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 2001, 15:710-723.
-
(2001)
Genes Dev.
, vol.15
, pp. 710-723
-
-
Hendrich, B.1
-
35
-
-
34249853277
-
DNA demethylation in the Arabidopsis genome
-
Penterman J., et al. DNA demethylation in the Arabidopsis genome. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:6752-6757.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 6752-6757
-
-
Penterman, J.1
-
36
-
-
0037074009
-
ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase
-
Gong Z., et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 2002, 111:803-814.
-
(2002)
Cell
, vol.111
, pp. 803-814
-
-
Gong, Z.1
-
37
-
-
33845866061
-
The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis
-
Zhu J., et al. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr. Biol. 2007, 17:54-59.
-
(2007)
Curr. Biol.
, vol.17
, pp. 54-59
-
-
Zhu, J.1
-
38
-
-
0037067658
-
DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis
-
Choi Y., et al. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 2002, 110:33-42.
-
(2002)
Cell
, vol.110
, pp. 33-42
-
-
Choi, Y.1
-
39
-
-
39749196238
-
Cellular programming of plant gene imprinting
-
Huh J.H., et al. Cellular programming of plant gene imprinting. Cell 2008, 132:735-744.
-
(2008)
Cell
, vol.132
, pp. 735-744
-
-
Huh, J.H.1
-
40
-
-
77956095231
-
Active DNA demethylation: many roads lead to Rome
-
Wu S.C., Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 2010, 11:607-620.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 607-620
-
-
Wu, S.C.1
Zhang, Y.2
-
41
-
-
57649196594
-
DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45
-
Rai K., et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 2008, 135:1201-1212.
-
(2008)
Cell
, vol.135
, pp. 1201-1212
-
-
Rai, K.1
-
42
-
-
77249148019
-
Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency
-
Popp C., et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 2010, 463:1101-1105.
-
(2010)
Nature
, vol.463
, pp. 1101-1105
-
-
Popp, C.1
-
43
-
-
0034268780
-
Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme
-
Muramatsu M., et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000, 102:553-563.
-
(2000)
Cell
, vol.102
, pp. 553-563
-
-
Muramatsu, M.1
-
44
-
-
77649104794
-
Reprogramming towards pluripotency requires AID-dependent DNA demethylation
-
Bhutani N., et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 2010, 463:1042-1047.
-
(2010)
Nature
, vol.463
, pp. 1042-1047
-
-
Bhutani, N.1
-
45
-
-
84862823251
-
Embryonic stem cells induce pluripotency in somatic cell fusion through biphasic reprogramming
-
Foshay K.M., et al. Embryonic stem cells induce pluripotency in somatic cell fusion through biphasic reprogramming. Mol. Cell 2012, 46:159-170.
-
(2012)
Mol. Cell
, vol.46
, pp. 159-170
-
-
Foshay, K.M.1
-
46
-
-
84881476513
-
AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes
-
Kumar R., et al. AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes. Nature 2013, 500:89-92.
-
(2013)
Nature
, vol.500
, pp. 89-92
-
-
Kumar, R.1
-
47
-
-
55749102739
-
African trypanosomes contain 5-methylcytosine in nuclear DNA
-
Militello K.T., et al. African trypanosomes contain 5-methylcytosine in nuclear DNA. Eukaryot. Cell 2008, 7:2012-2016.
-
(2008)
Eukaryot. Cell
, vol.7
, pp. 2012-2016
-
-
Militello, K.T.1
-
48
-
-
53849113697
-
Base J: discovery, biosynthesis, and possible functions
-
Borst P., Sabatini R. Base J: discovery, biosynthesis, and possible functions. Annu. Rev. Microbiol. 2008, 62:235-251.
-
(2008)
Annu. Rev. Microbiol.
, vol.62
, pp. 235-251
-
-
Borst, P.1
Sabatini, R.2
-
49
-
-
66149146320
-
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
-
Tahiliani M., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324:930-935.
-
(2009)
Science
, vol.324
, pp. 930-935
-
-
Tahiliani, M.1
-
50
-
-
77956189495
-
Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
-
Ito S., et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466:1129-1133.
-
(2010)
Nature
, vol.466
, pp. 1129-1133
-
-
Ito, S.1
-
51
-
-
84880900782
-
Tet family of 5-methylcytosine dioxygenases in mammalian development
-
Zhao H., Chen T. Tet family of 5-methylcytosine dioxygenases in mammalian development. J. Hum. Genet. 2013, 58:421-427.
-
(2013)
J. Hum. Genet.
, vol.58
, pp. 421-427
-
-
Zhao, H.1
Chen, T.2
-
52
-
-
66149123748
-
The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain
-
Kriaucionis S., Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009, 324:929-930.
-
(2009)
Science
, vol.324
, pp. 929-930
-
-
Kriaucionis, S.1
Heintz, N.2
-
53
-
-
79956323623
-
Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation
-
Ficz G., et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011, 473:398-402.
-
(2011)
Nature
, vol.473
, pp. 398-402
-
-
Ficz, G.1
-
54
-
-
79956302047
-
TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity
-
Williams K., et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 2011, 473:343-348.
-
(2011)
Nature
, vol.473
, pp. 343-348
-
-
Williams, K.1
-
55
-
-
84859387765
-
Heterologous expression and purification of Arabidopsis thaliana VIM1 protein: in vitro evidence for its inability to recognize hydroxymethylcytosine, a rare base in Arabidopsis DNA
-
Yao Q., et al. Heterologous expression and purification of Arabidopsis thaliana VIM1 protein: in vitro evidence for its inability to recognize hydroxymethylcytosine, a rare base in Arabidopsis DNA. Protein Expr. Purif. 2012, 83:104-111.
-
(2012)
Protein Expr. Purif.
, vol.83
, pp. 104-111
-
-
Yao, Q.1
-
56
-
-
84860221291
-
Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation
-
Hashimoto H., et al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 2012, 40:4841-4849.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 4841-4849
-
-
Hashimoto, H.1
-
57
-
-
79952763586
-
Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine
-
Iqbal K., et al. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:3642-3647.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 3642-3647
-
-
Iqbal, K.1
-
58
-
-
79952713567
-
5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming
-
Wossidlo M., et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2011, 2:241.
-
(2011)
Nat. Commun.
, vol.2
, pp. 241
-
-
Wossidlo, M.1
-
59
-
-
80053348585
-
The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes
-
Gu T-P., et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 2011, 477:606-610.
-
(2011)
Nature
, vol.477
, pp. 606-610
-
-
Gu, T.-P.1
-
60
-
-
80054097425
-
Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos
-
Inoue A., Zhang Y. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 2011, 334:194.
-
(2011)
Science
, vol.334
, pp. 194
-
-
Inoue, A.1
Zhang, Y.2
-
61
-
-
84872770694
-
Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine
-
Hackett J.A., et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 2013, 339:448-452.
-
(2013)
Science
, vol.339
, pp. 448-452
-
-
Hackett, J.A.1
-
62
-
-
84875783959
-
Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion
-
Piccolo F.M., et al. Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion. Mol. Cell 2013, 49:1023-1033.
-
(2013)
Mol. Cell
, vol.49
, pp. 1023-1033
-
-
Piccolo, F.M.1
-
63
-
-
79961139741
-
Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development
-
Dawlaty M.M., et al. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 2011, 9:166-175.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 166-175
-
-
Dawlaty, M.M.1
-
64
-
-
80052284526
-
Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice
-
Ko M., et al. Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14566-14571.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 14566-14571
-
-
Ko, M.1
-
65
-
-
84873707539
-
Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development
-
Dawlaty M.M., et al. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev. Cell 2013, 24:310-323.
-
(2013)
Dev. Cell
, vol.24
, pp. 310-323
-
-
Dawlaty, M.M.1
-
66
-
-
79955538247
-
Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain
-
Guo J.U., et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011, 145:423-434.
-
(2011)
Cell
, vol.145
, pp. 423-434
-
-
Guo, J.U.1
-
67
-
-
79959937861
-
Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair
-
Cortellino S., et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 2011, 146:67-79.
-
(2011)
Cell
, vol.146
, pp. 67-79
-
-
Cortellino, S.1
-
68
-
-
84865165385
-
AID enzymatic activity is inversely proportional to the size of cytosine C5 orbital cloud
-
Rangam G., et al. AID enzymatic activity is inversely proportional to the size of cytosine C5 orbital cloud. PLoS ONE 2012, 7:e43279.
-
(2012)
PLoS ONE
, vol.7
-
-
Rangam, G.1
-
69
-
-
84865329141
-
AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation
-
Nabel C.S., et al. AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat. Chem. Biol. 2012, 8:751-758.
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 751-758
-
-
Nabel, C.S.1
-
70
-
-
80052495940
-
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
-
He Y-F., et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333:1303-1307.
-
(2011)
Science
, vol.333
, pp. 1303-1307
-
-
He, Y.-F.1
-
71
-
-
80052461558
-
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
-
Ito S., et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333:1300-1303.
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
-
72
-
-
79960626636
-
The discovery of 5-formylcytosine in embryonic stem cell DNA
-
Pfaffeneder T., et al. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew. Chem. Int. Ed. Engl. 2011, 50:7008-7012.
-
(2011)
Angew. Chem. Int. Ed. Engl.
, vol.50
, pp. 7008-7012
-
-
Pfaffeneder, T.1
-
73
-
-
80053917872
-
Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites
-
Maiti A., Drohat A.C. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem. 2011, 286:35334-35338.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 35334-35338
-
-
Maiti, A.1
Drohat, A.C.2
-
74
-
-
84862776719
-
Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA
-
Zhang L., et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat. Chem. Biol. 2012, 8:328-330.
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 328-330
-
-
Zhang, L.1
-
75
-
-
79951810964
-
Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability
-
Cortázar D., et al. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 2011, 470:419-423.
-
(2011)
Nature
, vol.470
, pp. 419-423
-
-
Cortázar, D.1
-
76
-
-
84876946045
-
Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics
-
Shen L., et al. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 2013, 153:692-706.
-
(2013)
Cell
, vol.153
, pp. 692-706
-
-
Shen, L.1
-
77
-
-
84876907152
-
Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming
-
Song C-X., et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 2013, 153:678-691.
-
(2013)
Cell
, vol.153
, pp. 678-691
-
-
Song, C.-X.1
-
78
-
-
84555189745
-
DNA methylation: TET proteins-guardians of CpG islandsα
-
Williams K., et al. DNA methylation: TET proteins-guardians of CpG islandsα. EMBO Rep. 2011, 13:27-35.
-
(2011)
EMBO Rep.
, vol.13
, pp. 27-35
-
-
Williams, K.1
-
79
-
-
45449114804
-
The colorful history of active DNA demethylation
-
Ooi S.K.T., Bestor T.H. The colorful history of active DNA demethylation. Cell 2008, 133:1145-1148.
-
(2008)
Cell
, vol.133
, pp. 1145-1148
-
-
Ooi, S.K.T.1
Bestor, T.H.2
-
80
-
-
79954614277
-
A high-throughput DNA methylation analysis of a single cell
-
Kantlehner M., et al. A high-throughput DNA methylation analysis of a single cell. Nucleic Acids Res. 2011, 39:e44.
-
(2011)
Nucleic Acids Res.
, vol.39
-
-
Kantlehner, M.1
-
81
-
-
84878997106
-
Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
-
Shalek A.K., et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 2013, 498:236-240.
-
(2013)
Nature
, vol.498
, pp. 236-240
-
-
Shalek, A.K.1
-
82
-
-
84875949201
-
Stage-specific roles for Tet1 and Tet2 in DNA demethylation in primordial germ cells
-
Vincent J.J., et al. Stage-specific roles for Tet1 and Tet2 in DNA demethylation in primordial germ cells. Cell Stem Cell 2013, 12:470-478.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 470-478
-
-
Vincent, J.J.1
|