메뉴 건너뛰기




Volumn 19, Issue 1, 2014, Pages 8-15

Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species

Author keywords

Cellular metabolism; Iron regulatory protein 1; Posttranslational modification; Reactive oxygen species

Indexed keywords

ACONITATE HYDRATASE; REACTIVE OXYGEN METABOLITE;

EID: 84891867173     PISSN: 13510002     EISSN: 17432928     Source Type: Journal    
DOI: 10.1179/1351000213Y.0000000073     Document Type: Review
Times cited : (152)

References (76)
  • 1
    • 0037788005 scopus 로고    scopus 로고
    • Reversible transdominant inhibition of a metabolic pathway. In vivo evidence of interaction between two sequential tricarboxylic acid cycle enzymes in yeast
    • Velot C, Srere PA. Reversible transdominant inhibition of a metabolic pathway. In vivo evidence of interaction between two sequential tricarboxylic acid cycle enzymes in yeast. J Biol Chem 2000;275(17):12926-12933.
    • (2000) J Biol Chem , vol.275 , Issue.17 , pp. 12926-12933
    • Velot, C.1    Srere, P.A.2
  • 3
    • 0014216603 scopus 로고
    • Mechanism of aconitase action. I. The hydrogen transfer reaction
    • Rose IA, O'Connell EL. Mechanism of aconitase action. I. The hydrogen transfer reaction. J Biol Chem 1967;242(8):1870-1879.
    • (1967) J Biol Chem , vol.242 , Issue.8 , pp. 1870-1879
    • Rose, I.A.1    O'Connell, E.L.2
  • 4
    • 0026045587 scopus 로고
    • Superoxide sensitivity of the Escherichia coli aconitase
    • Gardner PR, Fridovich I. Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 1991;266(29):19328-19333.
    • (1991) J Biol Chem , vol.266 , Issue.29 , pp. 19328-19333
    • Gardner, P.R.1    Fridovich, I.2
  • 5
    • 0027491617 scopus 로고
    • The inactivation of Fe-S cluster containing hydro-lyases by superoxide
    • Flint DH, Tuminello JF, Emptage MH. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem 1993; 268(30):22369-22376.
    • (1993) J Biol Chem , vol.268 , Issue.30 , pp. 22369-22376
    • Flint, D.H.1    Tuminello, J.F.2    Emptage, M.H.3
  • 6
    • 0346365099 scopus 로고    scopus 로고
    • Redox-dependent modulation of aconitase activity in intact mitochondria
    • Bulteau AL, Ikeda-Saito M, Szweda LI. Redox-dependent modulation of aconitase activity in intact mitochondria. Biochemistry 2003;42(50):14846-14855.
    • (2003) Biochemistry , vol.42 , Issue.50 , pp. 14846-14855
    • Bulteau, A.L.1    Ikeda-Saito, M.2    Szweda, L.I.3
  • 7
    • 33750737798 scopus 로고    scopus 로고
    • Mitochondrial oxidative stress in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice
    • Velsor LW, Kariya C, Kachadourian R, Day BJ. Mitochondrial oxidative stress in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. Am J Respir Cell Mol Biol 2006;35(5):579-586.
    • (2006) Am J Respir Cell Mol Biol , vol.35 , Issue.5 , pp. 579-586
    • Velsor, L.W.1    Kariya, C.2    Kachadourian, R.3    Day, B.J.4
  • 8
    • 0036121191 scopus 로고    scopus 로고
    • Aconitase: Sensitive target and measure of superoxide
    • Gardner PR. Aconitase: sensitive target and measure of superoxide. Methods Enzymol 2002;349:9-23.
    • (2002) Methods Enzymol , vol.349 , pp. 9-23
    • Gardner, P.R.1
  • 10
    • 0037021453 scopus 로고    scopus 로고
    • Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress
    • Bota DA, Van Remmen H, Davies KJ. Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Lett 2002;532(1-2):103-106.
    • (2002) FEBS Lett , vol.532 , Issue.1-2 , pp. 103-106
    • Bota, D.A.1    van Remmen, H.2    Davies, K.J.3
  • 11
    • 0027048349 scopus 로고
    • Binding of cytosolic aconitase to the iron responsive element of porcine mitochondrial aconitase mRNA
    • Zheng L, Kennedy MC, Blondin GA, Beinert H, Zalkin H. Binding of cytosolic aconitase to the iron responsive element of porcine mitochondrial aconitase mRNA. Arch Biochem Biophys 1992;299(2):356-360.
    • (1992) Arch Biochem Biophys , vol.299 , Issue.2 , pp. 356-360
    • Zheng, L.1    Kennedy, M.C.2    Blondin, G.A.3    Beinert, H.4    Zalkin, H.5
  • 12
    • 62549102431 scopus 로고    scopus 로고
    • Reactive oxygen species: Destroyers or messengers
    • Bartosz G Reactive oxygen species: destroyers or messengers? Biochem Pharmacol 2009;77(8):1303-1315.
    • (2009) Biochem Pharmacol , vol.77 , Issue.8 , pp. 1303-1315
    • Bartosz, G.1
  • 14
    • 78650137003 scopus 로고    scopus 로고
    • Protein post-translational modifications in cell signaling and disease
    • Galli F, Cadenas E. Protein post-translational modifications in cell signaling and disease. Free Radic Res 2011;45(1):1-2.
    • (2011) Free Radic Res , vol.45 , Issue.1 , pp. 1-2
    • Galli, F.1    Cadenas, E.2
  • 15
    • 84860260443 scopus 로고    scopus 로고
    • Amino acid and protein modification by oxygen and nitrogen species
    • Galli F Amino acid and protein modification by oxygen and nitrogen species. Amino Acids 2012;42(1):1-4.
    • (2012) Amino Acids , vol.42 , Issue.1 , pp. 1-4
    • Galli, F.1
  • 16
    • 21144436659 scopus 로고    scopus 로고
    • Mitochondrial aconitase is a transglutaminase 2 substrate: Transglutamination is a probable mechanism contributing to high-molecular-weight aggregates of aconitase and loss of aconitase activity in Huntington disease brain
    • Kim SY, Marekov L, Bubber P, Browne SE, Stavrovskaya I, Lee J, et al. Mitochondrial aconitase is a transglutaminase 2 substrate: transglutamination is a probable mechanism contributing to high-molecular-weight aggregates of aconitase and loss of aconitase activity in Huntington disease brain. Neurochem Res 2005;30(10):1245-1255.
    • (2005) Neurochem Res , vol.30 , Issue.10 , pp. 1245-1255
    • Kim, S.Y.1    Marekov, L.2    Bubber, P.3    Browne, S.E.4    Stavrovskaya, I.5    Lee, J.6
  • 17
    • 24344441532 scopus 로고    scopus 로고
    • Yeast aconitase in two locations and two metabolic pathways: Seeing small amounts is believing
    • Regev-Rudzki N, Karniely S, Ben-Haim NN, Pines O. Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing. Mol Biol Cell 2005;16(9):4163-4171.
    • (2005) Mol Biol Cell , vol.16 , Issue.9 , pp. 4163-4171
    • Regev-Rudzki, N.1    Karniely, S.2    Ben-Haim, N.N.3    Pines, O.4
  • 18
    • 35348862343 scopus 로고    scopus 로고
    • Yeast aconitase binds and provides metabolically coupled protection to mitochondrial DNA
    • Chen XJ, Wang X, Butow RA. Yeast aconitase binds and provides metabolically coupled protection to mitochondrial DNA. Proc Natl Acad Sci USA 2007;104(34):13738-13743.
    • (2007) Proc Natl Acad Sci USA , vol.104 , Issue.34 , pp. 13738-13743
    • Chen, X.J.1    Wang, X.2    Butow, R.A.3
  • 19
    • 0037096190 scopus 로고    scopus 로고
    • The iron regulatory proteins: Targets and modulators of free radical reactions and oxidative damage
    • Cairo G, Recalcati S, Pietrangelo A, Minotti G The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage. Free Radic Biol Med 2002;32(12):1237-1243.
    • (2002) Free Radic Biol Med , vol.32 , Issue.12 , pp. 1237-1243
    • Cairo, G.1    Recalcati, S.2    Pietrangelo, A.3    Minotti, G.4
  • 20
    • 84864319642 scopus 로고    scopus 로고
    • Mammalian iron metabolism and its control by iron regulatory proteins
    • Anderson CP, Shen M, Eisenstein RS, Leibold EA. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta 2012;1823(9):1468-1483.
    • (2012) Biochim Biophys Acta , vol.1823 , Issue.9 , pp. 1468-1483
    • Anderson, C.P.1    Shen, M.2    Eisenstein, R.S.3    Leibold, E.A.4
  • 21
    • 0037062606 scopus 로고    scopus 로고
    • Nitric oxide and peroxynitrite activate the iron regulatory protein-1 of J774A.1 macrophages by direct disassembly of the Fe-S cluster of cytoplasmic aconitase
    • Cairo G, Ronchi R, Recalcati S, Campanella A, Minotti G Nitric oxide and peroxynitrite activate the iron regulatory protein-1 of J774A.1 macrophages by direct disassembly of the Fe-S cluster of cytoplasmic aconitase. Biochemistry 2002; 41(23):7435-7442.
    • (2002) Biochemistry , vol.41 , Issue.23 , pp. 7435-7442
    • Cairo, G.1    Ronchi, R.2    Recalcati, S.3    Campanella, A.4    Minotti, G.5
  • 22
    • 0033525713 scopus 로고    scopus 로고
    • Inactivation of both RNA binding and aconitase activities of iron regulatory protein-1 by quinone-induced oxidative stress
    • Gehring NH, Hentze MW, Pantopoulos K. Inactivation of both RNA binding and aconitase activities of iron regulatory protein-1 by quinone-induced oxidative stress. J Biol Chem 1999;274(10): 6219-6225.
    • (1999) J Biol Chem , vol.274 , Issue.10 , pp. 6219-6225
    • Gehring, N.H.1    Hentze, M.W.2    Pantopoulos, K.3
  • 23
    • 34548444513 scopus 로고    scopus 로고
    • Free radical oxidation of proteins and its relationship with functional state of organisms
    • Lushchak VI. Free radical oxidation of proteins and its relationship with functional state of organisms. Biochemistry (Mosc) 2007;72(8):809-827.
    • (2007) Biochemistry (Mosc) , vol.72 , Issue.8 , pp. 809-827
    • Lushchak, V.I.1
  • 24
    • 67649743469 scopus 로고    scopus 로고
    • Evidence that phosphoryl-ation of iron regulatory protein 1 at Serine 138 destabilizes the [4Fe-4S] cluster in cytosolic aconitase by enhancing 4Fe-3Fe cycling
    • Deck KM, Vasanthakumar A, Anderson SA, Goforth JB, Kennedy MC, Antholine WE, et al. Evidence that phosphoryl-ation of iron regulatory protein 1 at Serine 138 destabilizes the [4Fe-4S] cluster in cytosolic aconitase by enhancing 4Fe-3Fe cycling. J Biol Chem 2009;284(19):12701-12709.
    • (2009) J Biol Chem , vol.284 , Issue.19 , pp. 12701-12709
    • Deck, K.M.1    Vasanthakumar, A.2    Anderson, S.A.3    Goforth, J.B.4    Kennedy, M.C.5    Antholine, W.E.6
  • 25
    • 33845693952 scopus 로고    scopus 로고
    • Frataxin knockdown causes loss of cyto-plasmic iron-sulfur cluster functions, redox alterations and induction of heme transcripts
    • Lu C, Cortopassi G. Frataxin knockdown causes loss of cyto-plasmic iron-sulfur cluster functions, redox alterations and induction of heme transcripts. Arch Biochem Biophys 2007; 457(1):111-122.
    • (2007) Arch Biochem Biophys , vol.457 , Issue.1 , pp. 111-122
    • Lu, C.1    Cortopassi, G.2
  • 27
    • 84875805476 scopus 로고    scopus 로고
    • Impaired energy metabolism in a Drosophila model of mitochondrial aco-nitase deficiency
    • Cheng Z, Tsuda M, Kishita Y, Sato Y, Aigaki T. Impaired energy metabolism in a Drosophila model of mitochondrial aco-nitase deficiency. Biochem Biophys Res Commun 2013;433(1): 145-150.
    • (2013) Biochem Biophys Res Commun , vol.433 , Issue.1 , pp. 145-150
    • Cheng, Z.1    Tsuda, M.2    Kishita, Y.3    Sato, Y.4    Aigaki, T.5
  • 28
    • 3042763187 scopus 로고    scopus 로고
    • Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity
    • Bulteau AL, O'Neill HA, Kennedy MC, Ikeda-Saito M, Isaya G, Szweda LI. Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity. Science 2004; 305(5681):242-245.
    • (2004) Science , vol.305 , Issue.5681 , pp. 242-245
    • Bulteau, A.L.1    O'Neill, H.A.2    Kennedy, M.C.3    Ikeda-Saito, M.4    Isaya, G.5    Szweda, L.I.6
  • 30
    • 64949161526 scopus 로고    scopus 로고
    • Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging
    • Wei YH, Wu SB, Ma YS, Lee HC. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging. Chang Gung Med J 2009;32(2): 113-132.
    • (2009) Chang Gung Med J , vol.32 , Issue.2 , pp. 113-132
    • Wei, Y.H.1    Wu, S.B.2    Ma, Y.S.3    Lee, H.C.4
  • 31
    • 73649102401 scopus 로고    scopus 로고
    • Buffer modulation of menadione-induced oxi-dative stress in Saccharomyces cerevisiae
    • Lushchak OV, Bayliak MM, Korobova OV, Levine RL, Lushchak VI. Buffer modulation of menadione-induced oxi-dative stress in Saccharomyces cerevisiae. Redox Rep 2009;4(5): 214-220.
    • (2009) Redox Rep , vol.4 , Issue.5 , pp. 214-220
    • Lushchak, O.V.1    Bayliak, M.M.2    Korobova, O.V.3    Levine, R.L.4    Lushchak, V.I.5
  • 32
    • 84880556537 scopus 로고    scopus 로고
    • Mitochondrial susceptibility in a model of paraquat neurotoxicity
    • Czerniczyniec A, Lores-Arnaiz S, Bustamante J. Mitochondrial susceptibility in a model of paraquat neurotoxicity. Free Radic Res 2013;47(8):614-623.
    • (2013) Free Radic Res , vol.47 , Issue.8 , pp. 614-623
    • Czerniczyniec, A.1    Lores-Arnaiz, S.2    Bustamante, J.3
  • 33
    • 58049194179 scopus 로고    scopus 로고
    • Catalase modifies yeast Saccharomyces cerevisiae response towards S-nitrosoglu-tathione-induced stress
    • Lushchak OV, Lushchak VI. Catalase modifies yeast Saccharomyces cerevisiae response towards S-nitrosoglu-tathione-induced stress. Redox Rep 2008;13(6):283-291.
    • (2008) Redox Rep , vol.13 , Issue.6 , pp. 283-291
    • Lushchak, O.V.1    Lushchak, V.I.2
  • 34
    • 57349084617 scopus 로고    scopus 로고
    • Sodium nitroprusside induces mild oxidative stress in Saccharomyces cerevisiae
    • Lushchak OV, Lushchak VI. Sodium nitroprusside induces mild oxidative stress in Saccharomyces cerevisiae. Redox Rep 2008; 13(4):144-152.
    • (2008) Redox Rep , vol.13 , Issue.4 , pp. 144-152
    • Lushchak, O.V.1    Lushchak, V.I.2
  • 35
    • 77953361557 scopus 로고    scopus 로고
    • Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells
    • Klinger H, Rinnerthaler M, Lam YT, Laun P, Heeren G, Klocker A, et al. Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells. Exp Gerontol 2010;45(7-8):533-542.
    • (2010) Exp Gerontol , vol.45 , Issue.7-8 , pp. 533-542
    • Klinger, H.1    Rinnerthaler, M.2    Lam, Y.T.3    Laun, P.4    Heeren, G.5    Klocker, A.6
  • 36
    • 79960708329 scopus 로고    scopus 로고
    • Posttranslational modification of differentially expressed mitochondrial proteins in the retina during early experimental autoimmune uveitis
    • Saraswathy S, Rao NA. Posttranslational modification of differentially expressed mitochondrial proteins in the retina during early experimental autoimmune uveitis. Mol Vis 2011;17: 1814-1821.
    • (2011) Mol Vis , vol.17 , pp. 1814-1821
    • Saraswathy, S.1    Rao, N.A.2
  • 37
    • 34250187112 scopus 로고    scopus 로고
    • In vitro activation of apo-aconitase using a [4Fe-4S] cluster-loaded form of the IscU [Fe-S] cluster scaffolding protein
    • Unciuleac MC, Chandramouli K, Naik S, Mayer S, Huynh BY, Johnson MK, et al. In vitro activation of apo-aconitase using a [4Fe-4S] cluster-loaded form of the IscU [Fe-S] cluster scaffolding protein. Biochemistry 2007;46(23):6812-6821.
    • (2007) Biochemistry , vol.46 , Issue.23 , pp. 6812-6821
    • Unciuleac, M.C.1    Chandramouli, K.2    Naik, S.3    Mayer, S.4    Huynh, B.Y.5    Johnson, M.K.6
  • 38
    • 0034255455 scopus 로고    scopus 로고
    • The cysteine desul-furase, IscS, has a major role in in vivo Fe-S cluster formation in Escherichia coli
    • Schwartz CJ, Djaman O, Imlay JA, Kiley PJ. The cysteine desul-furase, IscS, has a major role in in vivo Fe-S cluster formation in Escherichia coli. Proc Natl Acad Sci USA 2000;97(16):9009-14.
    • (2000) Proc Natl Acad Sci USA , vol.97 , Issue.16 , pp. 9009-9014
    • Schwartz, C.J.1    Djaman, O.2    Imlay, J.A.3    Kiley, P.J.4
  • 40
    • 0033598677 scopus 로고    scopus 로고
    • Protein-sulfenic acids: Diverse roles for an unlikely player in enzyme catalysis and redox regulation
    • Claiborne A, Yeh JI, Mallett TC, Luba J, Crane EJ, III, Charrier V, et al. Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 1999; 38(47):15407-15416.
    • (1999) Biochemistry , vol.38 , Issue.47 , pp. 15407-15416
    • Claiborne, A.1    Yeh, J.I.2    Mallett, T.C.3    Luba, J.4    Crane III., E.J.5    Charrier, V.6
  • 41
    • 84869110746 scopus 로고    scopus 로고
    • Glutathione homeostasis and functions: Potential targets for medical interventions
    • 2012, 736837
    • Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids 2012;2012, ID 736837:26.
    • (2012) J Amino Acids , pp. 26
    • Lushchak, V.I.1
  • 42
    • 0031851329 scopus 로고    scopus 로고
    • Thiols protect the inhibition of myocardial aconitase by peroxynitrite
    • Cheung PY, Danial H, Jong J, Schulz R. Thiols protect the inhibition of myocardial aconitase by peroxynitrite. Arch Biochem Biophys 1998;350(1):104-108.
    • (1998) Arch Biochem Biophys , vol.350 , Issue.1 , pp. 104-108
    • Cheung, P.Y.1    Danial, H.2    Jong, J.3    Schulz, R.4
  • 43
    • 0242416188 scopus 로고    scopus 로고
    • ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin
    • Biteau B, Labarre J, Toledano MB. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 2003;425(6961):980-984.
    • (2003) Nature , vol.425 , Issue.6961 , pp. 980-984
    • Biteau, B.1    Labarre, J.2    Toledano, M.B.3
  • 44
    • 0019889424 scopus 로고
    • Amino acid sequence of a peptide containing an essential cysteine residue of pig heart aco-nitase
    • Hahm KS, Gawron O, Piszkiewicz D. Amino acid sequence of a peptide containing an essential cysteine residue of pig heart aco-nitase. Biochim Biophys Acta 1981;667(2):457-461.
    • (1981) Biochim Biophys Acta , vol.667 , Issue.2 , pp. 457-461
    • Hahm, K.S.1    Gawron, O.2    Piszkiewicz, D.3
  • 45
    • 24644469955 scopus 로고    scopus 로고
    • Sites and mechanisms of aconitase inactivation by peroxyni-trite: Modulation by citrate and glutathione
    • Han D, Canali R, Garcia J, Aguilera R, Gallaher TK, Cadenas E. Sites and mechanisms of aconitase inactivation by peroxyni-trite: modulation by citrate and glutathione. Biochemistry 2005;44(36):11986-11996.
    • (2005) Biochemistry , vol.44 , Issue.36 , pp. 11986-11996
    • Han, D.1    Canali, R.2    Garcia, J.3    Aguilera, R.4    Gallaher, T.K.5    Cadenas, E.6
  • 46
    • 0036713692 scopus 로고    scopus 로고
    • Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism
    • Bota DA, Davies KJ. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 2002;4(9):674-680.
    • (2002) Nat Cell Biol , vol.4 , Issue.9 , pp. 674-680
    • Bota, D.A.1    Davies, K.J.2
  • 47
    • 77954490419 scopus 로고    scopus 로고
    • Oxidized mitochondrial protein degradation and repair in aging and oxidative stress
    • Ugarte N, Petropoulos I, Friguet B. Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxid Redox Signal 2010;13(4):539-549.
    • (2010) Antioxid Redox Signal , vol.13 , Issue.4 , pp. 539-549
    • Ugarte, N.1    Petropoulos, I.2    Friguet, B.3
  • 49
    • 84877074328 scopus 로고    scopus 로고
    • Carbonylation of mitochondrial aconitase with 4-hydroxy-2-(E)-nonenal: Localization and relative reactivity of addition sites
    • Liu Q, Simpson DC, Gronert S. Carbonylation of mitochondrial aconitase with 4-hydroxy-2-(E)-nonenal: localization and relative reactivity of addition sites. Biochim Biophys Acta 2013; 1834(6):1144-1154.
    • (2013) Biochim Biophys Acta , vol.1834 , Issue.6 , pp. 1144-1154
    • Liu, Q.1    Simpson, D.C.2    Gronert, S.3
  • 50
    • 0030881686 scopus 로고    scopus 로고
    • Oxidative damage during aging targets mitochondrial aconitase
    • Yan LJ, Levine RL, Sohal RS. Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci USA 1997;94(21):11168-11172.
    • (1997) Proc Natl Acad Sci USA , vol.94 , Issue.21 , pp. 11168-11172
    • Yan, L.J.1    Levine, R.L.2    Sohal, R.S.3
  • 51
    • 28244454785 scopus 로고    scopus 로고
    • Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice
    • Yarian CS, Toroser D, Sohal RS. Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice. Mech Ageing Dev 2006;127(1):9-84.
    • (2006) Mech Ageing Dev , vol.127 , Issue.1 , pp. 9-84
    • Yarian, C.S.1    Toroser, D.2    Sohal, R.S.3
  • 52
    • 15444370200 scopus 로고    scopus 로고
    • Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria
    • Yarian CS, Rebrin I, Sohal RS. Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria. Biochem Biophys Res Commun 2005;330(1):151-156.
    • (2005) Biochem Biophys Res Commun , vol.330 , Issue.1 , pp. 151-156
    • Yarian, C.S.1    Rebrin, I.2    Sohal, R.S.3
  • 53
    • 38149109254 scopus 로고    scopus 로고
    • Mass spectrometry-based survey of age-associated protein carbo-nylation in rat brain mitochondria
    • Prokai L, Yan LJ, Vera-Serrano JL, Stevens SM Jr, Forster MJ. Mass spectrometry-based survey of age-associated protein carbo-nylation in rat brain mitochondria. J Mass Spectrom 2007; 42(12):1583-1589.
    • (2007) J Mass Spectrom , vol.42 , Issue.12 , pp. 1583-1589
    • Prokai, L.1    Yan, L.J.2    Vera-Serrano, J.L.3    Stevens Jr., S.M.4    Forster, M.J.5
  • 54
    • 77956213267 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in Parkinson's disease
    • Zhu J, Chu CT. Mitochondrial dysfunction in Parkinson's disease. J Alzheimers Dis 2010;20(Suppl 2):325-334.
    • (2010) J Alzheimers Dis , vol.20 , Issue.SUPPL. 2 , pp. 325-334
    • Zhu, J.1    Chu, C.T.2
  • 55
    • 84863644562 scopus 로고    scopus 로고
    • Recent advances in the treatment of neurodegenerative diseases based on GSH delivery systems
    • 2012, ID 240146
    • Cacciatore I, Baldassarre L, Fornasari E, Mollica A, Pinnen F. Recent advances in the treatment of neurodegenerative diseases based on GSH delivery systems. Oxid Med Cell Longev 2012; 2012, ID 240146:12.
    • (2012) Oxid Med Cell Longev , pp. 12
    • Cacciatore, I.1    Baldassarre, L.2    Fornasari, E.3    Mollica, A.4    Pinnen, F.5
  • 56
    • 84868310417 scopus 로고    scopus 로고
    • Mitochondrial oxidative stress index, activity of redox-sensitive aconitase and effects of endogenous anti-and pro-oxidants on its activity in control, Alzheimer's disease and Swedish Familial Alzheimer's disease brain
    • Raukas M, Rebane R, Mahlapuu R, Jefremov V, Zilmer K, Karelson E, et al. Mitochondrial oxidative stress index, activity of redox-sensitive aconitase and effects of endogenous anti-and pro-oxidants on its activity in control, Alzheimer's disease and Swedish Familial Alzheimer's disease brain. Free Radic Res 2012;46(12):1490-1495.
    • (2012) Free Radic Res , vol.46 , Issue.12 , pp. 1490-1495
    • Raukas, M.1    Rebane, R.2    Mahlapuu, R.3    Jefremov, V.4    Zilmer, K.5    Karelson, E.6
  • 57
    • 36749037338 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in neurodegenerative disorders
    • Baron M, Kudin AP, Kunz WS. Mitochondrial dysfunction in neurodegenerative disorders. Biochem Soc Trans 2007;35(Pt 5): 1228-1231.
    • (2007) Biochem Soc Trans , vol.35 , Issue.PART 5 , pp. 1228-1231
    • Baron, M.1    Kudin, A.P.2    Kunz, W.S.3
  • 58
    • 70350089195 scopus 로고    scopus 로고
    • Redox proteomics identification of 4-hydroxy-nonenal-modified brain proteins in Alzheimer's disease: Role of lipid peroxidation in Alzheimer's disease pathogenesis
    • Perluigi M, Sultana R, Cenini G, Di Domenico F, Memo M, Pierce WM, et al. Redox proteomics identification of 4-hydroxy-nonenal-modified brain proteins in Alzheimer's disease: role of lipid peroxidation in Alzheimer's disease pathogenesis. Proteomics Clin Appl 2009;3(6):682-693.
    • (2009) Proteomics Clin Appl , vol.3 , Issue.6 , pp. 682-693
    • Perluigi, M.1    Sultana, R.2    Cenini, G.3    Di Domenico, F.4    Memo, M.5    Pierce, W.M.6
  • 59
    • 67349279818 scopus 로고    scopus 로고
    • Proteomic identification of HNE-bound proteins in early Alzheimer disease: Insights into the role of lipid peroxidation in the progression of AD
    • Reed TT, Pierce WM, Markesbery WR, Butterfield DA. Proteomic identification of HNE-bound proteins in early Alzheimer disease: insights into the role of lipid peroxidation in the progression of AD. Brain Res 2009;1274:66-76.
    • (2009) Brain Res , vol.1274 , pp. 66-76
    • Reed, T.T.1    Pierce, W.M.2    Markesbery, W.R.3    Butterfield, D.A.4
  • 60
    • 84873677654 scopus 로고    scopus 로고
    • Glucose 6-phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure
    • Hecker PA, Lionetti V, Ribeiro RF Jr, Rastogi S, Brown BH, O'Connell KA, et al. Glucose 6-phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure. Circ Heart Fail 2013;6(1): 118-126.
    • (2013) Circ Heart Fail , vol.6 , Issue.1 , pp. 118-126
    • Hecker, P.A.1    Lionetti, V.2    Ribeiro Jr., R.F.3    Rastogi, S.4    Brown, B.H.5    O'Connell, K.A.6
  • 61
    • 33644845390 scopus 로고    scopus 로고
    • Comparative profiling of the mammalian mitochondrial proteome: Multiple aconitase-2 isoforms including N-formylkynurenine modifications as part of a protein bio-marker signature for reactive oxidative species
    • Hunzinger C, Wozny W, Schwall GP, Poznanovic S, Stegmann W, Zengerling H, et al. Comparative profiling of the mammalian mitochondrial proteome: multiple aconitase-2 isoforms including N-formylkynurenine modifications as part of a protein bio-marker signature for reactive oxidative species. J Proteome Res 2006;5(3):625-633.
    • (2006) J Proteome Res , vol.5 , Issue.3 , pp. 625-633
    • Hunzinger, C.1    Wozny, W.2    Schwall, G.P.3    Poznanovic, S.4    Stegmann, W.5    Zengerling, H.6
  • 62
    • 34548803964 scopus 로고    scopus 로고
    • Protein damage and inflammation in uraemia and dialysis patients
    • Galli F. Protein damage and inflammation in uraemia and dialysis patients. Nephrol Dial Transplant 2007;22:20-36.
    • (2007) Nephrol Dial Transplant , vol.22 , pp. 20-36
    • Galli, F.1
  • 64
    • 78650683517 scopus 로고    scopus 로고
    • Proteomics in investigation of protein nitration in kidney disease: Technical challenges and perspectives from the spontaneously hypertensive rat
    • Tyther R, McDonagh B, Sheehan D. Proteomics in investigation of protein nitration in kidney disease: technical challenges and perspectives from the spontaneously hypertensive rat. Mass Spectrom Rev 2011;30(1):121-141.
    • (2011) Mass Spectrom Rev , vol.30 , Issue.1 , pp. 121-141
    • Tyther, R.1    McDonagh, B.2    Sheehan, D.3
  • 65
    • 69649098723 scopus 로고    scopus 로고
    • In vivo protein tyrosine nitration in S. cerevisiae: Identification of tyrosine-nitrated proteins in mitochondria
    • Bhattacharjee A, Majumdar U, Maity D, Sarkar TS, Goswami AM, Sahoo R, et al. In vivo protein tyrosine nitration in S. cerevisiae: identification of tyrosine-nitrated proteins in mitochondria. Biochem Biophys Res Commun 2009;388(3):612-617.
    • (2009) Biochem Biophys Res Commun , vol.388 , Issue.3 , pp. 612-617
    • Bhattacharjee, A.1    Majumdar, U.2    Maity, D.3    Sarkar, T.S.4    Goswami, A.M.5    Sahoo, R.6
  • 66
    • 33645054564 scopus 로고    scopus 로고
    • Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neofor-mans: Implications for virulence
    • Missall TA, Pusateri ME, Donlin MJ, Chambers KT, Corbett JA, Lodge JK. Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neofor-mans: implications for virulence. Eukaryot Cell 2006;5(3): 518-529.
    • (2006) Eukaryot Cell , vol.5 , Issue.3 , pp. 518-529
    • Missall, T.A.1    Pusateri, M.E.2    Donlin, M.J.3    Chambers, K.T.4    Corbett, J.A.5    Lodge, J.K.6
  • 67
    • 0029758487 scopus 로고    scopus 로고
    • Molecular control of vertebrate iron metabolism: MRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress
    • Hentze MW, Kuhn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 1996;93(16):8175-8182.
    • (1996) Proc Natl Acad Sci USA , vol.93 , Issue.16 , pp. 8175-8182
    • Hentze, M.W.1    Kuhn, L.C.2
  • 68
    • 0030752458 scopus 로고    scopus 로고
    • Redox modulation of iron regulatory proteins by peroxynitrite
    • Bouton C, Hirling H, Drapier JC. Redox modulation of iron regulatory proteins by peroxynitrite. J Biol Chem 1997;272(32): 19969-19975.
    • (1997) J Biol Chem , vol.272 , Issue.32 , pp. 19969-19975
    • Bouton, C.1    Hirling, H.2    Drapier, J.C.3
  • 69
    • 0037663696 scopus 로고    scopus 로고
    • Peroxynitrite and nitric oxide differently target the iron-sulfur cluster and amino acid residues of human iron regulatory protein 1
    • Soum E, Brazzolotto X, Goussias C, Bouton C, Moulis JM, Mattioli TA, et al. Peroxynitrite and nitric oxide differently target the iron-sulfur cluster and amino acid residues of human iron regulatory protein 1. Biochemistry 2003;42(25):7648-7454.
    • (2003) Biochemistry , vol.42 , Issue.25 , pp. 7648-7654
    • Soum, E.1    Brazzolotto, X.2    Goussias, C.3    Bouton, C.4    Moulis, J.M.5    Mattioli, T.A.6
  • 70
    • 64649090344 scopus 로고    scopus 로고
    • Cysteine oxidation regulates the RNA-binding activity of iron regulatory protein 2
    • Zumbrennen KB, Wallander ML, Romney SJ, Leibold EA. Cysteine oxidation regulates the RNA-binding activity of iron regulatory protein 2. Mol Cell Biol 2009;29(8):2219-2229.
    • (2009) Mol Cell Biol , vol.29 , Issue.8 , pp. 2219-2229
    • Zumbrennen, K.B.1    Wallander, M.L.2    Romney, S.J.3    Leibold, E.A.4
  • 72
    • 3342904976 scopus 로고    scopus 로고
    • Selective inhibition of the citrate-to-isocitrate reaction of cytosolic aconitase by phosphomimetic mutation of serine-711
    • Pitula JS, Deck KM, Clarke SL, Anderson SA, Vasanthakumar A, Eisenstein RS. Selective inhibition of the citrate-to-isocitrate reaction of cytosolic aconitase by phosphomimetic mutation of serine-711. Proc Natl Acad Sci USA 2004;101(30):10907-10912.
    • (2004) Proc Natl Acad Sci USA , vol.101 , Issue.30 , pp. 10907-10912
    • Pitula, J.S.1    Deck, K.M.2    Clarke, S.L.3    Anderson, S.A.4    Vasanthakumar, A.5    Eisenstein, R.S.6
  • 73
    • 63049130752 scopus 로고    scopus 로고
    • Regulation of mitochondrial aconitase by phosphorylation in diabetic rat heart
    • Lin G, Brownsey RW, MacLeod KM. Regulation of mitochondrial aconitase by phosphorylation in diabetic rat heart. Cell Mol Life Sci 2009;66(5):919-932.
    • (2009) Cell Mol Life Sci , vol.66 , Issue.5 , pp. 919-932
    • Lin, G.1    Brownsey, R.W.2    Macleod, K.M.3
  • 74
    • 36549017624 scopus 로고    scopus 로고
    • Identification of the flavoprotein of succinate dehydrogenase and aconitase as in vitro mitochondrial substrates of Fgr tyrosine kinase
    • Salvi M, Morrice NA, Brunati AM, Toninello A. Identification of the flavoprotein of succinate dehydrogenase and aconitase as in vitro mitochondrial substrates of Fgr tyrosine kinase. FEBS Lett 2007;581(29):5579-5585.
    • (2007) FEBS Lett , vol.581 , Issue.29 , pp. 5579-5585
    • Salvi, M.1    Morrice, N.A.2    Brunati, A.M.3    Toninello, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.