-
1
-
-
58149200943
-
The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics
-
Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V., Henrissat B. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009, 37:D233-D238.
-
(2009)
Nucleic Acids Res
, vol.37
-
-
Cantarel, B.L.1
Coutinho, P.M.2
Rancurel, C.3
Bernard, T.4
Lombard, V.5
Henrissat, B.6
-
2
-
-
77957727454
-
An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides
-
Vaaje-Kolstad G., Westereng B., Horn S.J., Liu Z.L., Zhai H., Sθrlie M., Eijsink V.G.H. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 2010, 330:219-222.
-
(2010)
Science
, vol.330
, pp. 219-222
-
-
Vaaje-Kolstad, G.1
Westereng, B.2
Horn, S.J.3
Liu, Z.L.4
Zhai, H.5
Srlie, M.6
Eijsink, V.G.H.7
-
3
-
-
80053088478
-
Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components
-
Quinlan R.J., Sweeney M.D., Lo Leggio L., Otten H., Poulsen J.C.N., Johansen K.S., Krogh K., Jorgensen C.I., Tovborg M., Anthonsen A., et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 2011, 108:15079-15084.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 15079-15084
-
-
Quinlan, R.J.1
Sweeney, M.D.2
Lo Leggio, L.3
Otten, H.4
Poulsen, J.C.N.5
Johansen, K.S.6
Krogh, K.7
Jorgensen, C.I.8
Tovborg, M.9
Anthonsen, A.10
-
4
-
-
84055197660
-
Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa
-
Phillips C.M., Beeson W.T., Cate J.H., Marletta M.A. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 2011, 6:1399-1406.
-
(2011)
ACS Chem Biol
, vol.6
, pp. 1399-1406
-
-
Phillips, C.M.1
Beeson, W.T.2
Cate, J.H.3
Marletta, M.A.4
-
5
-
-
84855912007
-
Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases
-
Beeson W.T., Phillips C.M., Cate J.H.D., Marletta M.A. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 2012, 134:890-892.
-
(2012)
J Am Chem Soc
, vol.134
, pp. 890-892
-
-
Beeson, W.T.1
Phillips, C.M.2
Cate, J.H.D.3
Marletta, M.A.4
-
6
-
-
84863092120
-
Novel enzymes for the degradation of cellulose
-
Horn S., Vaaje-Kolstad G., Westereng B., Eijsink V. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 2012, 5:45.
-
(2012)
Biotechnol Biofuels
, vol.5
, pp. 45
-
-
Horn, S.1
Vaaje-Kolstad, G.2
Westereng, B.3
Eijsink, V.4
-
7
-
-
61949182379
-
Carbohydrate polymers at the center of life's origins: the importance of molecular processivity
-
Stern R., Jedrzejas M.J. Carbohydrate polymers at the center of life's origins: the importance of molecular processivity. Chem Rev 2008, 108:5061-5085.
-
(2008)
Chem Rev
, vol.108
, pp. 5061-5085
-
-
Stern, R.1
Jedrzejas, M.J.2
-
8
-
-
84866759500
-
Biased clique shuffling reveals stabilizing mutations in cellulase Cel7A
-
Dana C.M., Saija P., Kal S.M., Bryan M.B., Blanch H.W., Clark D.S. Biased clique shuffling reveals stabilizing mutations in cellulase Cel7A. Biotechnol Bioeng 2012, 109:2710-2719.
-
(2012)
Biotechnol Bioeng
, vol.109
, pp. 2710-2719
-
-
Dana, C.M.1
Saija, P.2
Kal, S.M.3
Bryan, M.B.4
Blanch, H.W.5
Clark, D.S.6
-
9
-
-
77956472829
-
Hypocrea jecorina CEL6A protein engineering
-
Lantz S.E., Goedegebuur F., Hommes R., Kaper T., Kelemen B.R., Mitchinson C., Wallace L., Stålhberg J., Larenas E.A. Hypocrea jecorina CEL6A protein engineering. Biotechnol Biofuels 2010, 3:20.
-
(2010)
Biotechnol Biofuels
, vol.3
, pp. 20
-
-
Lantz, S.E.1
Goedegebuur, F.2
Hommes, R.3
Kaper, T.4
Kelemen, B.R.5
Mitchinson, C.6
Wallace, L.7
Stålhberg, J.8
Larenas, E.A.9
-
10
-
-
41949128274
-
Towards new enzymes for biofuels: lessons from chitinase research
-
Eijsink V.G.H., Vaaje-Kolstad G., Varum K.M., Horn S.J. Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol 2008, 26:228-235.
-
(2008)
Trends Biotechnol
, vol.26
, pp. 228-235
-
-
Eijsink, V.G.H.1
Vaaje-Kolstad, G.2
Varum, K.M.3
Horn, S.J.4
-
11
-
-
84861164699
-
Measuring processivity
-
Horn S.J., Sθrlie M., Varum K.M., Väljamäe P., Eijsink V.G. Measuring processivity. Methods Enzymol 2012, 510:69-95.
-
(2012)
Methods Enzymol
, vol.510
, pp. 69-95
-
-
Horn, S.J.1
Srlie, M.2
Varum, K.M.3
Väljamäe, P.4
Eijsink, V.G.5
-
12
-
-
80052514287
-
Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface
-
Igarashi K., Uchihashi T., Koivula A., Wada M., Kimura S., Okamoto T., Penttila M., Ando T., Samejima M. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 2011, 333:1279-1282.
-
(2011)
Science
, vol.333
, pp. 1279-1282
-
-
Igarashi, K.1
Uchihashi, T.2
Koivula, A.3
Wada, M.4
Kimura, S.5
Okamoto, T.6
Penttila, M.7
Ando, T.8
Samejima, M.9
-
13
-
-
78650950110
-
Processivity of cellobiohydrolases is limited by the substrate
-
Kurašin M., Väljamäe P. Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 2011, 286:169-177.
-
(2011)
J Biol Chem
, vol.286
, pp. 169-177
-
-
Kurašin, M.1
Väljamäe, P.2
-
14
-
-
0018858254
-
The kinetics and processivity of nucleic acid polymerases
-
McClure W.R., Chow Y. The kinetics and processivity of nucleic acid polymerases. Methods Enzymol 1980, 64:277-297.
-
(1980)
Methods Enzymol
, vol.64
, pp. 277-297
-
-
McClure, W.R.1
Chow, Y.2
-
15
-
-
0141865611
-
General methods for analysis of sequential "n-step" kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding
-
Lucius A.L., Maluf N.K., Fischer C.J., Lohman T.M. General methods for analysis of sequential "n-step" kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding. Biophys J 2003, 85:2224-2239.
-
(2003)
Biophys J
, vol.85
, pp. 2224-2239
-
-
Lucius, A.L.1
Maluf, N.K.2
Fischer, C.J.3
Lohman, T.M.4
-
16
-
-
0031149857
-
Crystalline cellulose degradation: new insight into the function of cellobiohydrolases
-
Teeri T.T. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 1997, 15:160-167.
-
(1997)
Trends Biotechnol
, vol.15
, pp. 160-167
-
-
Teeri, T.T.1
-
17
-
-
0032537565
-
Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A
-
Koivula A., Kinnari T., Harjunpaa V., Ruohonen L., Teleman A., Drakenberg T., Rouvinen J., Jones T.A., Teeri T.T. Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A. FEBS Lett 1998, 429:341-346.
-
(1998)
FEBS Lett
, vol.429
, pp. 341-346
-
-
Koivula, A.1
Kinnari, T.2
Harjunpaa, V.3
Ruohonen, L.4
Teleman, A.5
Drakenberg, T.6
Rouvinen, J.7
Jones, T.A.8
Teeri, T.T.9
-
18
-
-
70350493135
-
Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B
-
Vuong T.V., Wilson D.B. Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B. Appl Environ Microbiol 2009, 75:6655-6661.
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 6655-6661
-
-
Vuong, T.V.1
Wilson, D.B.2
-
19
-
-
84856839149
-
Initial- and processive-cut products reveal cellobiohydrolase rate limitations and the role of companion enzymes
-
Fox J.M., Levine S.E., Clark D.S., Blanch H.W. Initial- and processive-cut products reveal cellobiohydrolase rate limitations and the role of companion enzymes. Biochemistry 2012, 51:442-452.
-
(2012)
Biochemistry
, vol.51
, pp. 442-452
-
-
Fox, J.M.1
Levine, S.E.2
Clark, D.S.3
Blanch, H.W.4
-
20
-
-
0142106377
-
Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D
-
von Ossowski I., Ståhlberg J., Koivula A., Piens K., Becker D., Boer H., Harle R., Harris M., Divne C., Mahdi S., et al. Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D. J Mol Biol 2003, 333:817-829.
-
(2003)
J Mol Biol
, vol.333
, pp. 817-829
-
-
von Ossowski, I.1
Ståhlberg, J.2
Koivula, A.3
Piens, K.4
Becker, D.5
Boer, H.6
Harle, R.7
Harris, M.8
Divne, C.9
Mahdi, S.10
-
21
-
-
0026545567
-
Assay of reducing end-groups in oligosaccharide homologs with 2,2'-bicinchoninate
-
Doner L.W., Irwin P.L. Assay of reducing end-groups in oligosaccharide homologs with 2,2'-bicinchoninate. Anal Biochem 1992, 202:50-53.
-
(1992)
Anal Biochem
, vol.202
, pp. 50-53
-
-
Doner, L.W.1
Irwin, P.L.2
-
22
-
-
0027651651
-
Activity studies of 8 purified cellulases - specificity, synergism, and binding domain effects
-
Irwin D.C., Spezio M., Walker L.P., Wilson D.B. Activity studies of 8 purified cellulases - specificity, synergism, and binding domain effects. Biotechnol Bioeng 1993, 42:1002-1013.
-
(1993)
Biotechnol Bioeng
, vol.42
, pp. 1002-1013
-
-
Irwin, D.C.1
Spezio, M.2
Walker, L.P.3
Wilson, D.B.4
-
23
-
-
0031897880
-
Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis
-
Irwin D., Shin D.H., Zhang S., Barr B.K., Sakon J., Karplus P.A., Wilson D.B. Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 1998, 180:1709-1714.
-
(1998)
J Bacteriol
, vol.180
, pp. 1709-1714
-
-
Irwin, D.1
Shin, D.H.2
Zhang, S.3
Barr, B.K.4
Sakon, J.5
Karplus, P.A.6
Wilson, D.B.7
-
24
-
-
0034043589
-
Site-directed mutation of noncatalytic residues of Thermobifida fusca exocellulase Cel6B
-
Zhang S., Irwin D.C., Wilson D.B. Site-directed mutation of noncatalytic residues of Thermobifida fusca exocellulase Cel6B. Eur J Biochem 2000, 267:3101-3115.
-
(2000)
Eur J Biochem
, vol.267
, pp. 3101-3115
-
-
Zhang, S.1
Irwin, D.C.2
Wilson, D.B.3
-
25
-
-
69949099255
-
Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans
-
Watson B.J., Zhang H.T., Longmire A.G., Moon Y.H., Hutcheson S.W. Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J Bacteriol 2009, 191:5697-5705.
-
(2009)
J Bacteriol
, vol.191
, pp. 5697-5705
-
-
Watson, B.J.1
Zhang, H.T.2
Longmire, A.G.3
Moon, Y.H.4
Hutcheson, S.W.5
-
26
-
-
20344363170
-
Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis
-
Zhang Y.H.P., Lynd L.R. Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules 2005, 6:1510-1515.
-
(2005)
Biomacromolecules
, vol.6
, pp. 1510-1515
-
-
Zhang, Y.H.P.1
Lynd, L.R.2
-
27
-
-
12844278017
-
Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as 'burst' kinetics on fluorescent polymeric model substrates
-
Kipper K., Väljamäe P., Johansson G. Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as 'burst' kinetics on fluorescent polymeric model substrates. Biochem J 2005, 385:527-535.
-
(2005)
Biochem J
, vol.385
, pp. 527-535
-
-
Kipper, K.1
Väljamäe, P.2
Johansson, G.3
-
28
-
-
77952877807
-
Reducing end-specific fluorescence labeled celluloses for cellulase mode of action
-
Velleste R., Teugjas H., Väljamäe P. Reducing end-specific fluorescence labeled celluloses for cellulase mode of action. Cellulose 2010, 17:125-138.
-
(2010)
Cellulose
, vol.17
, pp. 125-138
-
-
Velleste, R.1
Teugjas, H.2
Väljamäe, P.3
-
29
-
-
77955691535
-
Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis
-
Jalak J., Väljamäe P. Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Biotechnol Bioeng 2010, 106:871-883.
-
(2010)
Biotechnol Bioeng
, vol.106
, pp. 871-883
-
-
Jalak, J.1
Väljamäe, P.2
-
30
-
-
84865224370
-
Endo-exo synergism in cellulose hydrolysis revisited
-
Jalak J., Kurašin M., Teugjas H., Väljamäe P. Endo-exo synergism in cellulose hydrolysis revisited. J Biol Chem 2012, 287:28802-28815.
-
(2012)
J Biol Chem
, vol.287
, pp. 28802-28815
-
-
Jalak, J.1
Kurašin, M.2
Teugjas, H.3
Väljamäe, P.4
-
31
-
-
84861552894
-
Pre-steady-state kinetics for hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A
-
Cruys-Bagger N., Elmerdahl J., Praestgaard E., Tatsumi H., Spodsberg N., Borch K., Westh P. Pre-steady-state kinetics for hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A. J Biol Chem 2012, 287:18451-18458.
-
(2012)
J Biol Chem
, vol.287
, pp. 18451-18458
-
-
Cruys-Bagger, N.1
Elmerdahl, J.2
Praestgaard, E.3
Tatsumi, H.4
Spodsberg, N.5
Borch, K.6
Westh, P.7
-
32
-
-
84885918891
-
A steady-state theory for processive cellulases
-
Cruys-Bagger N., Elmerdahl J., Praestgaard E., Borch K., Westh P. A steady-state theory for processive cellulases. FEBS J 2013, 280:3952-3961.
-
(2013)
FEBS J
, vol.280
, pp. 3952-3961
-
-
Cruys-Bagger, N.1
Elmerdahl, J.2
Praestgaard, E.3
Borch, K.4
Westh, P.5
-
33
-
-
0030755281
-
Substrate-assisted catalysis unifies two families of chitinolytic enzymes
-
Tews I., van Scheltinga A.C.T., Perrakis A., Wilson K.S., Dijkstra B.W. Substrate-assisted catalysis unifies two families of chitinolytic enzymes. J Am Chem Soc 1997, 119:7954-7959.
-
(1997)
J Am Chem Soc
, vol.119
, pp. 7954-7959
-
-
Tews, I.1
van Scheltinga, A.C.T.2
Perrakis, A.3
Wilson, K.S.4
Dijkstra, B.W.5
-
34
-
-
0035979240
-
Structural insights into the catalytic mechanism of a Family 18 exo-chitinase
-
van Aalten D.M.F., Komander D., Synstad B., Gaseidnes S., Peter M.G., Eijsink V.G.H. Structural insights into the catalytic mechanism of a Family 18 exo-chitinase. Proc Natl Acad Sci U S A 2001, 98:8979-8984.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 8979-8984
-
-
van Aalten, D.M.F.1
Komander, D.2
Synstad, B.3
Gaseidnes, S.4
Peter, M.G.5
Eijsink, V.G.H.6
-
35
-
-
12544256264
-
Degradation of chitosans with chitinase B from Serratia marcescens - production of chito-oligosaccharides and insight into enzyme processivity
-
Sorbotten A., Horn S.J., Eijsink V.G.H., Varum K.M. Degradation of chitosans with chitinase B from Serratia marcescens - production of chito-oligosaccharides and insight into enzyme processivity. FEBS J 2005, 272:538-549.
-
(2005)
FEBS J
, vol.272
, pp. 538-549
-
-
Sorbotten, A.1
Horn, S.J.2
Eijsink, V.G.H.3
Varum, K.M.4
-
36
-
-
33845321374
-
Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides
-
Horn S.J., Sikorski P., Cederkvist J.B., Vaaje-Kolstad G., Sθrlie M., Synstad B., Vriend G., Varum K.M., Eijsink V.G.H. Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proc Natl Acad Sci U S A 2006, 103:18089-18094.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 18089-18094
-
-
Horn, S.J.1
Sikorski, P.2
Cederkvist, J.B.3
Vaaje-Kolstad, G.4
Srlie, M.5
Synstad, B.6
Vriend, G.7
Varum, K.M.8
Eijsink, V.G.H.9
-
37
-
-
84879205605
-
The chitinolytic machinery of Serratiamarcescens - a model system for enzymatic degradation of recalcitrant polysaccharides
-
Vaaje-Kolstad G., Horn S.J., Sθrlie M., Eijsink V.G.H. The chitinolytic machinery of Serratiamarcescens - a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS J 2013, 280:3028-3049.
-
(2013)
FEBS J
, vol.280
, pp. 3028-3049
-
-
Vaaje-Kolstad, G.1
Horn, S.J.2
Srlie, M.3
Eijsink, V.G.H.4
-
38
-
-
73649106924
-
High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose
-
Igarashi K., Koivula A., Wada M., Kimura S., Penttila M., Samejima M. High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 2009, 284:36186-36190.
-
(2009)
J Biol Chem
, vol.284
, pp. 36186-36190
-
-
Igarashi, K.1
Koivula, A.2
Wada, M.3
Kimura, S.4
Penttila, M.5
Samejima, M.6
-
39
-
-
0034029116
-
Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A
-
Boisset C., Fraschini C., Schülein M., Henrissat B., Chanzy H. Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Appl Environ Microbiol 2000, 66:1444-1452.
-
(2000)
Appl Environ Microbiol
, vol.66
, pp. 1444-1452
-
-
Boisset, C.1
Fraschini, C.2
Schülein, M.3
Henrissat, B.4
Chanzy, H.5
-
40
-
-
0030065736
-
Identification of two functionally different classes of exocellulases
-
Barr B.K., Hsieh Y.L., Ganem B., Wilson D.B. Identification of two functionally different classes of exocellulases. Biochemistry 1996, 35:586-592.
-
(1996)
Biochemistry
, vol.35
, pp. 586-592
-
-
Barr, B.K.1
Hsieh, Y.L.2
Ganem, B.3
Wilson, D.B.4
-
41
-
-
0034850147
-
A structural basis for processivity
-
Breyer W.A., Matthews B.W. A structural basis for processivity. Protein Sci 2001, 10:1699-1711.
-
(2001)
Protein Sci
, vol.10
, pp. 1699-1711
-
-
Breyer, W.A.1
Matthews, B.W.2
-
42
-
-
0027968302
-
The 3-dimensional crystal-structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei
-
Divne C., Ståhlberg J., Reinikainen T., Ruohonen L., Pettersson G., Knowles J.K.C., Teeri T.T., Jones T.A. The 3-dimensional crystal-structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 1994, 265:524-528.
-
(1994)
Science
, vol.265
, pp. 524-528
-
-
Divne, C.1
Ståhlberg, J.2
Reinikainen, T.3
Ruohonen, L.4
Pettersson, G.5
Knowles, J.K.C.6
Teeri, T.T.7
Jones, T.A.8
-
43
-
-
0345676498
-
High-resolution crystal structures reveal how a cellulose chain is bound in the 50Å long tunnel of cellobiohydrolase I from Trichoderma reesei
-
Divne C., Ståhlberg J., Teeri T.T., Jones T.A. High-resolution crystal structures reveal how a cellulose chain is bound in the 50Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 1998, 275:309-325.
-
(1998)
J Mol Biol
, vol.275
, pp. 309-325
-
-
Divne, C.1
Ståhlberg, J.2
Teeri, T.T.3
Jones, T.A.4
-
44
-
-
33644935876
-
Endo/exo mechanism and processivity of Family 18 chitinases produced by Serratia marcescens
-
Horn S.J., Sorbotten A., Synstad B., Sikorski P., Sθrlie M., Varum K.M., Eijsink V.G.H. Endo/exo mechanism and processivity of Family 18 chitinases produced by Serratia marcescens. FEBS J 2006, 273:491-503.
-
(2006)
FEBS J
, vol.273
, pp. 491-503
-
-
Horn, S.J.1
Sorbotten, A.2
Synstad, B.3
Sikorski, P.4
Srlie, M.5
Varum, K.M.6
Eijsink, V.G.H.7
-
45
-
-
0035861979
-
Family 7 cellobiohydrolases from Phanerochaete chrysosporium: crystal structure of the catalytic module of Cel7D (CBH58) at 1.32Å resolution and homology models of the isozymes
-
Muñoz I.G., Ubhayasekera W., Henriksson H., Szabó I., Pettersson G., Johansson G., Mowbray S.L., Ståhlberg J. Family 7 cellobiohydrolases from Phanerochaete chrysosporium: crystal structure of the catalytic module of Cel7D (CBH58) at 1.32Å resolution and homology models of the isozymes. J Mol Biol 2001, 314:1097-1111.
-
(2001)
J Mol Biol
, vol.314
, pp. 1097-1111
-
-
Muñoz, I.G.1
Ubhayasekera, W.2
Henriksson, H.3
Szabó, I.4
Pettersson, G.5
Johansson, G.6
Mowbray, S.L.7
Ståhlberg, J.8
-
46
-
-
84867792150
-
Hallmarks of processivity in glycoside hydrolases from crystallographic and computational studies of the Serratia marcescens chitinases
-
Payne C.M., Baban J., Horn S.J., Backe P.H., Arvai A.S., Dalhus B., Bjθras M., Eijsink V.G.H., Sθrlie M., Beckham G.T., et al. Hallmarks of processivity in glycoside hydrolases from crystallographic and computational studies of the Serratia marcescens chitinases. J Biol Chem 2012, 287:36322-36330.
-
(2012)
J Biol Chem
, vol.287
, pp. 36322-36330
-
-
Payne, C.M.1
Baban, J.2
Horn, S.J.3
Backe, P.H.4
Arvai, A.S.5
Dalhus, B.6
Bjras, M.7
Eijsink, V.G.H.8
Srlie, M.9
Beckham, G.T.10
-
47
-
-
84861176066
-
Processivity and substrate-binding in Family 18 chitinases
-
Sørlie M., Zakariassen H., Norberg A.L., Eijsink V.G.H. Processivity and substrate-binding in Family 18 chitinases. Biocatal Biotransfor 2012, 30:353-365.
-
(2012)
Biocatal Biotransfor
, vol.30
, pp. 353-365
-
-
Sørlie, M.1
Zakariassen, H.2
Norberg, A.L.3
Eijsink, V.G.H.4
-
48
-
-
0037478704
-
Structural basis for ligand binding and processivity in cellobiohydrolase Cel6A from Humicola insolens
-
Varrot A., Frandsen T.P., von Ossowski I., Boyer V., Cottaz S., Driguez H., Schülein M., Davies G.J. Structural basis for ligand binding and processivity in cellobiohydrolase Cel6A from Humicola insolens. Structure 2003, 11:855-864.
-
(2003)
Structure
, vol.11
, pp. 855-864
-
-
Varrot, A.1
Frandsen, T.P.2
von Ossowski, I.3
Boyer, V.4
Cottaz, S.5
Driguez, H.6
Schülein, M.7
Davies, G.J.8
-
49
-
-
67449088829
-
Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency
-
Zakariassen H., Aam B.B., Horn S.J., Varum K.M., Sørlie M., Eijsink V.G.H. Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency. J Biol Chem 2009, 284:10610-10617.
-
(2009)
J Biol Chem
, vol.284
, pp. 10610-10617
-
-
Zakariassen, H.1
Aam, B.B.2
Horn, S.J.3
Varum, K.M.4
Sørlie, M.5
Eijsink, V.G.H.6
-
50
-
-
79954418588
-
Applications of computational science for understanding enzymatic deconstruction of cellulose
-
Beckham G.T., Bomble Y.J., Bayer E.A., Himmel M.E., Crowley M.F. Applications of computational science for understanding enzymatic deconstruction of cellulose. Curr Opin Biotechnol 2011, 22:231-238.
-
(2011)
Curr Opin Biotechnol
, vol.22
, pp. 231-238
-
-
Beckham, G.T.1
Bomble, Y.J.2
Bayer, E.A.3
Himmel, M.E.4
Crowley, M.F.5
-
51
-
-
84890685861
-
Glycoside hydrolase processivity is directly related to oligosaccharide binding free energy
-
Payne C.M., Jiang W., Shirts M.R., Himmel M.E., Crowley M.F., Beckham G.T. Glycoside hydrolase processivity is directly related to oligosaccharide binding free energy. J Am Chem Soc 2013, 135:18831-18839.
-
(2013)
J Am Chem Soc
, vol.135
, pp. 18831-18839
-
-
Payne, C.M.1
Jiang, W.2
Shirts, M.R.3
Himmel, M.E.4
Crowley, M.F.5
Beckham, G.T.6
-
52
-
-
84874318103
-
Structural, biochemical, and computational characterization of the glycoside hydrolase Family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare
-
Momeni M.H., Payne C.M., Hansson H., Mikkelsen N.E., Svedberg J., Engström Å., Sandgren M., Beckham G.T., Ståhlberg J. Structural, biochemical, and computational characterization of the glycoside hydrolase Family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare. J Biol Chem 2013, 288:5861-5872.
-
(2013)
J Biol Chem
, vol.288
, pp. 5861-5872
-
-
Momeni, M.H.1
Payne, C.M.2
Hansson, H.3
Mikkelsen, N.E.4
Svedberg, J.5
Engström, Å.6
Sandgren, M.7
Beckham, G.T.8
Ståhlberg, J.9
-
53
-
-
84877045923
-
Binding site dynamics and aromatic-carbohydrate interactions in processive and non-processive Family 7 glycoside hydrolases
-
Taylor C.B., Payne C.M., Himmel M.E., Crowley M.F., McCabe C., Beckham G.T. Binding site dynamics and aromatic-carbohydrate interactions in processive and non-processive Family 7 glycoside hydrolases. J Phys Chem B 2013, 117:4924-4933.
-
(2013)
J Phys Chem B
, vol.117
, pp. 4924-4933
-
-
Taylor, C.B.1
Payne, C.M.2
Himmel, M.E.3
Crowley, M.F.4
McCabe, C.5
Beckham, G.T.6
-
54
-
-
73949121918
-
Computation of absolute hydration and binding free energy with free energy perturbation distributed replica-exchange molecular dynamics
-
Jiang W., Hodoscek M., Roux B. Computation of absolute hydration and binding free energy with free energy perturbation distributed replica-exchange molecular dynamics. J Chem Theory Comput 2009, 5:2583-2588.
-
(2009)
J Chem Theory Comput
, vol.5
, pp. 2583-2588
-
-
Jiang, W.1
Hodoscek, M.2
Roux, B.3
-
55
-
-
77956574437
-
Free energy perturbation hamiltonian replica-exchange molecular dynamics (fep/h-remd) for absolute ligand binding free energy calculations
-
Jiang W., Roux B. Free energy perturbation hamiltonian replica-exchange molecular dynamics (fep/h-remd) for absolute ligand binding free energy calculations. J Chem Theory Comput 2010, 6:2559-2565.
-
(2010)
J Chem Theory Comput
, vol.6
, pp. 2559-2565
-
-
Jiang, W.1
Roux, B.2
-
56
-
-
78249285272
-
Determination of substrate binding energies in individual subsites of a Family 18 chitinase
-
Norberg A.L., Karlsen V., Hoell I.A., Bakke I., Eijsink V.G.H., Sørlie M. Determination of substrate binding energies in individual subsites of a Family 18 chitinase. FEBS Lett 2010, 584:4581-4585.
-
(2010)
FEBS Lett
, vol.584
, pp. 4581-4585
-
-
Norberg, A.L.1
Karlsen, V.2
Hoell, I.A.3
Bakke, I.4
Eijsink, V.G.H.5
Sørlie, M.6
-
57
-
-
3843092654
-
Mapping glycoside hydrolase substrate subsites by isothermal titration calorimetry
-
Zolotnitsky G., Cogan U., Adir N., Solomon V., Shoham G., Shoham Y. Mapping glycoside hydrolase substrate subsites by isothermal titration calorimetry. Proc Natl Acad Sci U S A 2004, 101:11275-11280.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 11275-11280
-
-
Zolotnitsky, G.1
Cogan, U.2
Adir, N.3
Solomon, V.4
Shoham, G.5
Shoham, Y.6
-
58
-
-
84874159970
-
Initial recognition of a cellodextrin chain in the cellulose-binding tunnel may affect cellobiohydrolase directional specificity
-
GhattyVenkataKrishna P.K., Alekozai E.M., Beckham G.T., Schulz R., Crowley M.F., Uberbacher E.C., Cheng X.L. Initial recognition of a cellodextrin chain in the cellulose-binding tunnel may affect cellobiohydrolase directional specificity. Biophys J 2013, 104:904-912.
-
(2013)
Biophys J
, vol.104
, pp. 904-912
-
-
GhattyVenkataKrishna, P.K.1
Alekozai, E.M.2
Beckham, G.T.3
Schulz, R.4
Crowley, M.F.5
Uberbacher, E.C.6
Cheng, X.L.7
-
59
-
-
84877698510
-
Tryptophan residue at active-site tunnel entrance of Trichoderma reesei cellobiohydrolase Cel7A is important to initiate degradation of crystalline cellulose
-
Nakamura A., Tsukada T., Auer S., Furuta T., Wada M., Koivula A., Igarashi K., Samejima M. Tryptophan residue at active-site tunnel entrance of Trichoderma reesei cellobiohydrolase Cel7A is important to initiate degradation of crystalline cellulose. J Biol Chem 2013, 288:13503-13510.
-
(2013)
J Biol Chem
, vol.288
, pp. 13503-13510
-
-
Nakamura, A.1
Tsukada, T.2
Auer, S.3
Furuta, T.4
Wada, M.5
Koivula, A.6
Igarashi, K.7
Samejima, M.8
-
60
-
-
0030947305
-
Identification of the catalytic nucleophile of endoglucanase I from Fusarium oxysporum by mass spectrometry
-
Mackenzie L.F., Davies G.J., Schülein M., Withers S.G. Identification of the catalytic nucleophile of endoglucanase I from Fusarium oxysporum by mass spectrometry. Biochemistry 1997, 36:5893-5901.
-
(1997)
Biochemistry
, vol.36
, pp. 5893-5901
-
-
Mackenzie, L.F.1
Davies, G.J.2
Schülein, M.3
Withers, S.G.4
-
61
-
-
0032532639
-
Crystal structure of the family 7 endoglucanase I (Cel7B) from Humicola insolens at 2.2angstrom resolution and identification of the catalytic nucleophile by trapping of the covalent glycosyl-enzyme intermediate
-
Mackenzie L.F., Sulzenbacher G., Divne C., Jones T.A., Woldike H.F., Schülein M., Withers S.G., Davies G.J. Crystal structure of the family 7 endoglucanase I (Cel7B) from Humicola insolens at 2.2angstrom resolution and identification of the catalytic nucleophile by trapping of the covalent glycosyl-enzyme intermediate. Biochem J 1998, 335:409-416.
-
(1998)
Biochem J
, vol.335
, pp. 409-416
-
-
Mackenzie, L.F.1
Sulzenbacher, G.2
Divne, C.3
Jones, T.A.4
Woldike, H.F.5
Schülein, M.6
Withers, S.G.7
Davies, G.J.8
-
62
-
-
0343488512
-
Structure of the endoglucanase I from Fusarium oxysporum: native, cellobiose, and 3,4-epoxybutyl beta-d-cellobioside-inhibited forms, at 2.3angstrom resolution
-
Sulzenbacher G., Schülein M., Davies G.J. Structure of the endoglucanase I from Fusarium oxysporum: native, cellobiose, and 3,4-epoxybutyl beta-d-cellobioside-inhibited forms, at 2.3angstrom resolution. Biochemistry 1997, 36:5902-5911.
-
(1997)
Biochemistry
, vol.36
, pp. 5902-5911
-
-
Sulzenbacher, G.1
Schülein, M.2
Davies, G.J.3
-
63
-
-
17444404534
-
Structures of Phanerochaete chrysosporium Cel7D in complex with product and inhibitors
-
Ubhayasekera W., Muñoz I.G., Vasella A., Ståhlberg J., Mowbray S.L. Structures of Phanerochaete chrysosporium Cel7D in complex with product and inhibitors. FEBS J 2005, 272:1952-1964.
-
(2005)
FEBS J
, vol.272
, pp. 1952-1964
-
-
Ubhayasekera, W.1
Muñoz, I.G.2
Vasella, A.3
Ståhlberg, J.4
Mowbray, S.L.5
-
64
-
-
85067772608
-
The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies
-
Knott B.C., Haddad Momeni M., Crowley M.F., Mackenzie L.F., Goetz A.W., Sandgren M., Withers S.G., Ståhlberg J., Beckham G.T. The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies. J Am Chem Soc 2013.
-
(2013)
J Am Chem Soc
-
-
Knott, B.C.1
Haddad Momeni, M.2
Crowley, M.F.3
Mackenzie, L.F.4
Goetz, A.W.5
Sandgren, M.6
Withers, S.G.7
Ståhlberg, J.8
Beckham, G.T.9
-
65
-
-
48249145161
-
Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding
-
Parkkinen T., Koivula A., Vehmaanpera J., Rouvinen J. Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding. Protein Sci 2008, 17:1383-1394.
-
(2008)
Protein Sci
, vol.17
, pp. 1383-1394
-
-
Parkkinen, T.1
Koivula, A.2
Vehmaanpera, J.3
Rouvinen, J.4
-
66
-
-
84879292929
-
Structural characterization of a unique marine animal Family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance
-
Kern M., McGeehan J.E., Streeter S.D., Martin R.N.A., Besser K., Elias L., Eborall W., Malyon G.P., Payne C.M., Himmel M.E., et al. Structural characterization of a unique marine animal Family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance. Proc Natl Acad Sci U S A 2013, 110:10189-10194.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 10189-10194
-
-
Kern, M.1
McGeehan, J.E.2
Streeter, S.D.3
Martin, R.N.A.4
Besser, K.5
Elias, L.6
Eborall, W.7
Malyon, G.P.8
Payne, C.M.9
Himmel, M.E.10
-
67
-
-
0030606294
-
Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolase I from Trichoderma reesei
-
Stålhberg J., Divne C., Koivula A., Piens K., Claeyssens M., Teeri T.T., Jones T.A. Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 1996, 264:337-349.
-
(1996)
J Mol Biol
, vol.264
, pp. 337-349
-
-
Stålhberg, J.1
Divne, C.2
Koivula, A.3
Piens, K.4
Claeyssens, M.5
Teeri, T.T.6
Jones, T.A.7
-
68
-
-
84979146389
-
Stereochemistry and the mechanism of enzymatic reactions
-
Koshland D.E. Stereochemistry and the mechanism of enzymatic reactions. Biol Rev Camb Philos Soc 1953, 28:416-436.
-
(1953)
Biol Rev Camb Philos Soc
, vol.28
, pp. 416-436
-
-
Koshland, D.E.1
-
69
-
-
84863797974
-
Product binding varies dramatically between processive and nonprocessive cellulase enzymes
-
Bu L.T., Nimlos M.R., Shirts M.R., Ståhlberg J., Himmel M.E., Crowley M.F., Beckham G.T. Product binding varies dramatically between processive and nonprocessive cellulase enzymes. J Biol Chem 2012, 287:24807-24813.
-
(2012)
J Biol Chem
, vol.287
, pp. 24807-24813
-
-
Bu, L.T.1
Nimlos, M.R.2
Shirts, M.R.3
Ståhlberg, J.4
Himmel, M.E.5
Crowley, M.F.6
Beckham, G.T.7
-
70
-
-
0025182502
-
Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei
-
Rouvinen J., Bergfors T., Teeri T., Knowles J.K., Jones T.A. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 1990, 249:380-386.
-
(1990)
Science
, vol.249
, pp. 380-386
-
-
Rouvinen, J.1
Bergfors, T.2
Teeri, T.3
Knowles, J.K.4
Jones, T.A.5
-
71
-
-
84872867991
-
The structure of a bacterial cellobiohydrolase: the catalytic core of the Thermobifida fusca Family GH6 cellobiohydrolase Cel6B
-
Sandgren M., Wu M., Karkehabadi S., Mitchinson C., Kelemen B.R., Larenas E.A., Stålhberg J., Hansson H. The structure of a bacterial cellobiohydrolase: the catalytic core of the Thermobifida fusca Family GH6 cellobiohydrolase Cel6B. J Mol Biol 2013, 425:622-635.
-
(2013)
J Mol Biol
, vol.425
, pp. 622-635
-
-
Sandgren, M.1
Wu, M.2
Karkehabadi, S.3
Mitchinson, C.4
Kelemen, B.R.5
Larenas, E.A.6
Stålhberg, J.7
Hansson, H.8
-
72
-
-
84887846505
-
Loop motions important to product expulsion in the Thermobifida fusca glycoside hydrolase Family 6 cellobiohydrolase from structural and computational studies
-
Wu M., Bu L., Vuong T.V., Wilson D.B., Crowley M.F., Sandgren M., Ståhlberg J., Beckham G.T., Hansson H. Loop motions important to product expulsion in the Thermobifida fusca glycoside hydrolase Family 6 cellobiohydrolase from structural and computational studies. J Biol Chem 2013, 288:33107-33117.
-
(2013)
J Biol Chem
, vol.288
, pp. 33107-33117
-
-
Wu, M.1
Bu, L.2
Vuong, T.V.3
Wilson, D.B.4
Crowley, M.F.5
Sandgren, M.6
Ståhlberg, J.7
Beckham, G.T.8
Hansson, H.9
-
73
-
-
84872027136
-
Rational design, synthesis, evaluation and enzyme-substrate structures of improved fluorogenic substrates for Family 6 glycoside hydrolases
-
Wu M., Nerinckx W., Piens K., Ishida T., Hansson H., Sandgren M., Stålhberg J. Rational design, synthesis, evaluation and enzyme-substrate structures of improved fluorogenic substrates for Family 6 glycoside hydrolases. FEBS J 2013, 280:184-198.
-
(2013)
FEBS J
, vol.280
, pp. 184-198
-
-
Wu, M.1
Nerinckx, W.2
Piens, K.3
Ishida, T.4
Hansson, H.5
Sandgren, M.6
Stålhberg, J.7
-
74
-
-
0033199581
-
Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Cel6A from Trichoderma reesei
-
Zou J.-Y., Kleywegt G.J., Ståhlberg J., Driguez H., Nerinckx W., Claeyssens M., Koivula A., Teeri T.T., Jones T.A. Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Cel6A from Trichoderma reesei. Structure 1999, 7:1035-1045.
-
(1999)
Structure
, vol.7
, pp. 1035-1045
-
-
Zou, J.-Y.1
Kleywegt, G.J.2
Ståhlberg, J.3
Driguez, H.4
Nerinckx, W.5
Claeyssens, M.6
Koivula, A.7
Teeri, T.T.8
Jones, T.A.9
-
75
-
-
0037189899
-
The active site of cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids D221 and D175
-
Koivula A., Ruohonen L., Wohlfahrt G., Reinikainen T., Teeri T.T., Piens K., Claeyssens M., Weber M., Vasella A., Becker D., et al. The active site of cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids D221 and D175. J Am Chem Soc 2002, 124:10015-10024.
-
(2002)
J Am Chem Soc
, vol.124
, pp. 10015-10024
-
-
Koivula, A.1
Ruohonen, L.2
Wohlfahrt, G.3
Reinikainen, T.4
Teeri, T.T.5
Piens, K.6
Claeyssens, M.7
Weber, M.8
Vasella, A.9
Becker, D.10
-
76
-
-
84874295340
-
Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation
-
Sammond D.W., Payne C.M., Brunecky R., Himmel M.E., Crowley M.F., Beckham G.T. Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation. PLoS ONE 2012, 7:e48615.
-
(2012)
PLoS ONE
, vol.7
-
-
Sammond, D.W.1
Payne, C.M.2
Brunecky, R.3
Himmel, M.E.4
Crowley, M.F.5
Beckham, G.T.6
-
77
-
-
84883372876
-
Glycosylated linkers in multi-modular lignocellulose degrading enzymes dynamically bind to cellulose
-
Payne C.M., Resch M.G., Chen L., Crowley M.F., Himmel M., Taylor L.E.I., Sandgren M., Ståhlberg J., Stals I., Tan Z., et al. Glycosylated linkers in multi-modular lignocellulose degrading enzymes dynamically bind to cellulose. Proc Natl Acad Sci U S A 2013, 110:14646-14651.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 14646-14651
-
-
Payne, C.M.1
Resch, M.G.2
Chen, L.3
Crowley, M.F.4
Himmel, M.5
Taylor, L.E.I.6
Sandgren, M.7
Ståhlberg, J.8
Stals, I.9
Tan, Z.10
|