메뉴 건너뛰기




Volumn 45, Issue 8, 2009, Pages

Effective forecasting of hourly typhoon rainfall using support vector machines

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION NETWORK; COMPLEX PHYSICAL PROCESS; DEBRIS FLOWS; FORECASTING PERFORMANCE; GENERALIZATION ABILITY; HIGH VARIABILITY; KEY INPUT; LONG LEADS; MODELING TECHNIQUE; RESERVOIR OPERATION; SPACE AND TIME; TYPHOON CHARACTERISTICS; TYPHOON RAINFALL; WARNING SYSTEMS;

EID: 70349774410     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2009WR007911     Document Type: Article
Times cited : (104)

References (32)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology part I: Preliminary concepts, doi:10.1061/(ASCE) 1084-0699(2000)5: 2(115)
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a), Artificial neural networks in hydrology, part I: Preliminary concepts, J. Hydrol. Eng., 5(2), 115-123, doi:10.1061/(ASCE) 1084-0699(2000)5:2(115).
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 115-123
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, part II: Hydrologie applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology doi:10.1061/ (ASCE) 1084-0699(2000)5:2( 124)
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b), Artificial neural networks in hydrology, part II: Hydrologie applications, J. Hydrol. Eng., 5(2), 124-137, doi:10.1061/ (ASCE) 1084-0699(2000)5:2( 124).
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 31444454927 scopus 로고    scopus 로고
    • Support vector machines for nonlinear state space reconstruction: Application to the Great Salt Lake time series
    • DOI 10.1029/2004WR003785, W12422
    • Asefa, T., M. Kemblowski, U. Lall, and G. Urroz (2005), Support vector machines for nonlinear state space reconstruction: Application to the Great Salt Lake time series, Water Resour. Res., 41, W12422 doi: 10.1029/2004 WR003785. (Pubitemid 43151113)
    • (2005) Water Resources Research , vol.41 , Issue.12 , pp. 1-10
    • Asefa, T.1    Kemblowski, M.2    Lall, U.3    Urroz, G.4
  • 4
    • 70349771630 scopus 로고    scopus 로고
    • Tropical cyclones in a warmer climate
    • Bengtsson, L. (2007), Tropical cyclones in a warmer climate, WMO Bull, 56(3), 196-203.
    • (2007) WMO Bull , vol.56 , Issue.3 , pp. 196-203
    • Bengtsson, L.1
  • 5
    • 34447331259 scopus 로고    scopus 로고
    • Shared near neighbours neural network model: A debris flow warning system
    • doi:10.1002/hyp.6489
    • Chang, F. J., K. Y. Tseng, and P. Chaves (2007), Shared near neighbours neural network model: A debris flow warning system, Hydrol. Processes, 21(14), 1968-1976, doi:10.1002/hyp.6489.
    • (2007) Hydrol. Processes , vol.21 , Issue.14 , pp. 1968-1976
    • Chang, F.J.1    Tseng, K.Y.2    Chaves, P.3
  • 6
    • 47949123659 scopus 로고    scopus 로고
    • Counterpropagation fuzzy-neural network for city flood control system
    • doi:10.1016/j.jhydrol.2008.05.013
    • Chang, F. J., K. Y. Chang, and L. C. Chang (2008), Counterpropagation fuzzy-neural network for city flood control system, J. Hydrol, 358(1 -2), 24-34, doi:10.1016/j.jhydrol.2008.05.013.
    • (2008) J. Hydrol , vol.358 , Issue.1-2 , pp. 24-34
    • Chang, F.J.1    Chang, K.Y.2    Chang, L.C.3
  • 7
    • 36348947903 scopus 로고    scopus 로고
    • Stochastic fuzzy neural network: Case study of optimal reservoir operation
    • DOI 10.1061/(ASCE)0733-9496(2007)133:6(509)
    • Chaves, P., and T. Kojiri (2007), Stochastic fuzzy neural network: Case study of optimal reservoir operation, J. Water Resour. Plann. Manage 133, 509-518, doi: 10.1061/(ASCE)0733-9496(2007)133:6(509). (Pubitemid 350154186)
    • (2007) Journal of Water Resources Planning and Management , vol.133 , Issue.6 , pp. 509-518
    • Chaves, P.1    Kojiri, T.2
  • 8
    • 33846454693 scopus 로고    scopus 로고
    • Dynamic ANN for precipitation estimation and forecasting from radar observations
    • doi: 10.1016/j.jhydrol.2006.10.021
    • Chiang, Y. M., F. C. Chang, J. D. B. Jou, and P. F. Lin (2007), Dynamic ANN for precipitation estimation and forecasting from radar observations, J. Hydrol, 334(1-2), 250-261, doi: 10.1016/j.jhydrol.2006.10.021.
    • (2007) J. Hydrol , vol.334 , Issue.1-2 , pp. 250-261
    • Chiang, Y.M.1    Chang, F.C.2    Jou, J.D.B.3    Lin, P.F.4
  • 10
    • 33846428782 scopus 로고    scopus 로고
    • Potential assessment of the support vector regression technique in rainfall forecasting
    • DOI 10.1007/s11269-006-9026-2
    • Hong, W. C., and P. F. Pai (2007), Potential assessment of the support vector regression technique in rainfall forecasting, Water Resour. Manage., 21, 495-513, doi: 10.1007/s11269-006-9026-2. (Pubitemid 46140257)
    • (2007) Water Resources Management , vol.21 , Issue.2 , pp. 495-513
    • Hong, W.-C.1    Pai, P.-F.2
  • 11
    • 65349101737 scopus 로고    scopus 로고
    • Using oceanic-atmospheric oscillations for long lead time forecasting
    • doi:10.1029/2008WR006855
    • Kalra, A., and S. Ahmad (2009), Using oceanic-atmospheric oscillations for long lead time forecasting, Water Resour. Res., 45, W03413, doi:10.1029/2008WR006855.
    • (2009) Water Resour. Res. , vol.45
    • Kalra, A.1    Ahmad, S.2
  • 12
    • 29944444287 scopus 로고    scopus 로고
    • Sparse Bayesian learning machine for real-time management of reservoir releases
    • DOI 10.1029/2004WR003891, W11401
    • Khalil, A., M. Mckee, M. Kemblowski, and T. Asefa (2005), Sparse Bayesian learning machine for real-time management of reservoir releases, Water Resour. Res., 41,W11401, doi:10.1029/2004WR003891. (Pubitemid 43041789)
    • (2005) Water Resources Research , vol.41 , Issue.11 , pp. 1-15
    • Khalil, A.1    McKee, M.2    Kemblowski, M.3    Asefa, T.4
  • 13
    • 15844424535 scopus 로고    scopus 로고
    • Determination of aquifer parameters using radial basis function network approach
    • Lin, G. F., and G. R. Chen (2005), Determination of aquifer parameters using radial basis function network approach, J. Chin. Inst Eng., 28(2), 241-249.
    • (2005) J. Chin. Inst Eng. , vol.28 , Issue.2 , pp. 241-249
    • Lin, G.F.1    Chen, G.R.2
  • 14
    • 28744432693 scopus 로고    scopus 로고
    • An improved neural network approach to the determination of aquifer parameters
    • DOI 10.1016/j.jhydrol.2005.04.023, PII S0022169405002143
    • Lin, G. F., and G. R. Chen (2006), An improved neural network approach to the determination of aquifer parameters, J. Hydrol, 316(1-4), 281-289, doi:10.1016/j.jhydrol.2005.04.023. (Pubitemid 41758413)
    • (2006) Journal of Hydrology , vol.316 , Issue.1-4 , pp. 281-289
    • Lin, G.-F.1    Chen, G.-R.2
  • 15
    • 48649086325 scopus 로고    scopus 로고
    • A systematic approach to the input determination for neural network rainfall-runoff models
    • doi: 10.1002/hyp.6849
    • Lin, G. F., and G. R. Chen (2008), A systematic approach to the input determination for neural network rainfall-runoff models, Hydrol. Processes, 22(14), 2524-2530, doi: 10.1002/hyp.6849.
    • (2008) Hydrol. Processes , vol.22 , Issue.14 , pp. 2524-2530
    • Lin, G.F.1    Chen, G.R.2
  • 16
    • 1642387025 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using radial basis function network
    • DOI 10.1016/j.jhydrol.2003.10.015, PII S0022169403004335
    • Lin, G. F., and L. H. Chen (2004), A non-linear rainfall-runoff model using radial basis function network, J. Hydrol, 289(1-4), 1-8, doi:10.1016/ j.jhydrol.2003.10.015. (Pubitemid 38355830)
    • (2004) Journal of Hydrology , vol.289 , Issue.1-4 , pp. 1-8
    • Lin, G.-F.1    Chen, L.-H.2
  • 17
    • 20844462859 scopus 로고    scopus 로고
    • Application of an artificial neural network to typhoon rainfall forecasting
    • DOI 10.1002/hyp.5638
    • Lin, G. F., and L. H. Chen (2005a), Application of artificial neural network to typhoon rainfall forecasting, Hydrol. Processes, 19(9), 1825-1837, doi:10.1002/hyp.5638. (Pubitemid 40865398)
    • (2005) Hydrological Processes , vol.19 , Issue.9 , pp. 1825-1837
    • Lin, G.-F.1    Chen, L.-H.2
  • 18
    • 21344450695 scopus 로고    scopus 로고
    • Time series forecasting by combining the radial basis function network and the self-organizing map
    • doi:10.1002/hyp.5637
    • Lin, G. F., and L. H. Chen (2005b), Time series forecasting by combining the radial basis function network and the self-organizing map, Hydrol. Processes, 19(10), 1925-1937, doi:10.1002/hyp.5637.
    • (2005) Hydrol. Processes , vol.19 , Issue.10 , pp. 1925-1937
    • Lin, G.F.1    Chen, L.H.2
  • 19
    • 65649123113 scopus 로고    scopus 로고
    • Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods
    • doi:10.1016/ j.jhydrol.2009.03.032
    • Lin, G. F., G. R. Chen, P. Y. Huang, and Y. G Chou (2009), Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods, J. Hydrol, 372(1-4), 17-29, doi:10.1016/ j.jhydrol.2009.03.032.
    • (2009) J. Hydrol , vol.372 , Issue.1-4 , pp. 17-29
    • Lin, G.F.1    Chen, G.R.2    Huang, P.Y.3    Chou, Y.G.4
  • 21
    • 0035104376 scopus 로고    scopus 로고
    • An application of artificial neural networks for rainfall forecasting
    • DOI 10.1016/S0895-7177(00)00272-7, PII S0895717700002727
    • Luk, K. G., J. E. Ball, and A. Sharma (2001), An application of artificial neural networks for rainfall forecasting, Math. Comput. Modell, 33, 683-693, doi:10.1016/S0895-7177(00)00272-7. (Pubitemid 32175191)
    • (2001) Mathematical and Computer Modelling , vol.33 , Issue.6-7 , pp. 683-693
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 22
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • doi: 10.1016/ S1364-8152(99)00007-9
    • Maier, H. R., and G. C. Dandy (2000), Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications, Environ. Modell. Software, 15, 101-124, doi: 10.1016/ S1364-8152(99)00007-9.
    • (2000) Environ. Modell. Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 23
    • 18144390148 scopus 로고    scopus 로고
    • Flow categorization model for improving forecasting
    • Sivapragasam, C., and S. Y. Liong (2005), Flow categorization model for improving forecasting, Nord. Hydrol, 36(1), 37-48. (Pubitemid 40620978)
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 37-48
    • Sivapragasam, C.1    Liong, S.-Y.2
  • 24
    • 0037359617 scopus 로고    scopus 로고
    • Tidal-level forecasting and filtering by neural network model
    • doi: 10.1142/S0578563403000695
    • Supharatid, S. (2003), Tidal-level forecasting and filtering by neural network model, Coastal Eng. J, 45(1), 119-137, doi: 10.1142/S0578563403000695.
    • (2003) Coastal Eng. J , vol.45 , Issue.1 , pp. 119-137
    • Supharatid, S.1
  • 25
    • 0034298851 scopus 로고    scopus 로고
    • Application of tank, NAM, ARMA and neural network models to flood forecasting
    • doi:10.1002/1099-1085(20001015)14:14<2473::AIDHYP109>3.0.CO;2-J
    • Tingsanchali, T., and M. R. Gautam (2000), Application of tank, NAM, ARMA and neural network models to flood forecasting, Hydrol. Processes, 14(14), 2473-2487, doi:10.1002/1099-1085(20001015)14:14<2473::AIDHYP109>3.0.CO;2- J.
    • (2000) Hydrol. Processes , vol.14 , Issue.14 , pp. 2473-2487
    • Tingsanchali, T.1    Gautam, M.R.2
  • 26
    • 37549066943 scopus 로고    scopus 로고
    • Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling
    • doi:10.1029/2006WR005383
    • Toth, E., and A. Brath (2007), Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling, Water Resour. Res., 43, W11405, doi:10.1029/2006WR005383.
    • (2007) Water Resour. Res. , vol.43
    • Toth, E.1    Brath, A.2
  • 27
    • 37549012555 scopus 로고    scopus 로고
    • Optimization of hedging rules for reservoir operations
    • doi:10.1061/(ASCE)0733-9496(2008)134:1(3)
    • Tu, M. Y., N. S. Hsu, F. T. C. Tsai, and W. W. G. Yeh (2008), Optimization of hedging rules for reservoir operations, J. Water Resour. Plann. Manage., 134, 3-13, doi:10.1061/(ASCE)0733-9496(2008)134:1(3).
    • (2008) J. Water Resour. Plann. Manage. , vol.134 , pp. 3-13
    • Tu, M.Y.1    Hsu, N.S.2    Tsai, F.T.C.3    Yeh, W.W.G.4
  • 30
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • DOI 10.1016/j.jhydrol.2006.01.021, PII S0022169406000473
    • Yu, P. S., S. T. Chen, and I. F. Chang (2006), Support vector regression for real-time flood stage forecasting, J. Hydrol, 328(3-4), 704-716, doi: 10.1016/j.jhydrol.2006.01.021. (Pubitemid 44188765)
    • (2006) Journal of Hydrology , vol.328 , Issue.3-4 , pp. 704-716
    • Yu, P.-S.1    Chen, S.-T.2    Chang, I.-F.3
  • 31
    • 33845702662 scopus 로고    scopus 로고
    • Forecasting of hydrologic time series with ridge regression in feature space
    • DOI 10.1016/j.jhydrol.2006.07.003, PII S0022169406003544
    • Yu, X. Y., and S. Y. Liong (2007), Forecasting of hydrologie time series with ridge regression in feature space, J. Hydrol, 332(3-4), 290-302, doi: 10.1016/j .jhydrol.2006.07.003. (Pubitemid 44969650)
    • (2007) Journal of Hydrology , vol.332 , Issue.3-4 , pp. 290-302
    • Yu, X.1    Liong, S.-Y.2
  • 32
    • 84919454581 scopus 로고    scopus 로고
    • EC-SVM approach for realtime hydrologie forecasting
    • Yu, X. Y., S. Y. Liong, and V. Babovic (2004), EC-SVM approach for realtime hydrologie forecasting, J. Hydroinformatics, 6(3), 209-223.
    • (2004) J. Hydroinformatics , vol.6 , Issue.3 , pp. 209-223
    • Yu, X.Y.1    Liong, S.Y.2    Babovic, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.