-
1
-
-
77649144557
-
Repeat instability as the basis for human diseases and as a potential target for therapy
-
Lopez Castel A., Cleary J.D., Pearson C.E. Repeat instability as the basis for human diseases and as a potential target for therapy. Nat. Rev. Mol. Cell. Biol. 2010, 11:165-170.
-
(2010)
Nat. Rev. Mol. Cell. Biol.
, vol.11
, pp. 165-170
-
-
Lopez Castel, A.1
Cleary, J.D.2
Pearson, C.E.3
-
2
-
-
77958109197
-
Mechanisms of trinucleotide repeat instability during human development
-
McMurray C.T. Mechanisms of trinucleotide repeat instability during human development. Nat. Rev. Genet. 2010, 11:786-799.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 786-799
-
-
McMurray, C.T.1
-
3
-
-
0032708840
-
Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice
-
Manley K., Shirley T.L., Flaherty L., Messer A. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat. Genet. 1999, 23:471-473.
-
(1999)
Nat. Genet.
, vol.23
, pp. 471-473
-
-
Manley, K.1
Shirley, T.L.2
Flaherty, L.3
Messer, A.4
-
4
-
-
0035065524
-
Trinucleotide expansion in haploid germ cells by gap repair
-
Kovtun I.V., McMurray C.T. Trinucleotide expansion in haploid germ cells by gap repair. Nat. Genet. 2001, 27:407-411.
-
(2001)
Nat. Genet.
, vol.27
, pp. 407-411
-
-
Kovtun, I.V.1
McMurray, C.T.2
-
5
-
-
0037081784
-
Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins
-
van den Broek W.J.A.A., Nelen M.R., Wansink D.G., Coerwinkel M.M., te Riele H., Groenen P.J.T.A., Wieringa B. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum. Mol. Genet. 2002, 11:191-198.
-
(2002)
Hum. Mol. Genet.
, vol.11
, pp. 191-198
-
-
van den Broek, W.J.A.A.1
Nelen, M.R.2
Wansink, D.G.3
Coerwinkel, M.M.4
te Riele, H.5
Groenen, P.J.T.A.6
Wieringa, B.7
-
6
-
-
0037543991
-
CTG repeat instability and size variation timing in DNA repair-deficient mice
-
Savouret C., Brisson E., Essers J., Kanaar R., Pastink A., te Riele H., Junien C., Gourdon G. CTG repeat instability and size variation timing in DNA repair-deficient mice. EMBO J. 2003, 22:2264-2273.
-
(2003)
EMBO J.
, vol.22
, pp. 2264-2273
-
-
Savouret, C.1
Brisson, E.2
Essers, J.3
Kanaar, R.4
Pastink, A.5
te Riele, H.6
Junien, C.7
Gourdon, G.8
-
7
-
-
0037321290
-
Mismatch repair gene Msh2 modifies the timing of early disease in HdhQ111 striatum
-
Wheeler V.C., Lebel L.-A., Vrbanac V., Teed A., te Riele H., MacDonald M.E. Mismatch repair gene Msh2 modifies the timing of early disease in HdhQ111 striatum. Hum. Mol. Genet. 2003, 12:273-281.
-
(2003)
Hum. Mol. Genet.
, vol.12
, pp. 273-281
-
-
Wheeler, V.C.1
Lebel, L.-A.2
Vrbanac, V.3
Teed, A.4
te Riele, H.5
MacDonald, M.E.6
-
8
-
-
25844468819
-
(CAG)n-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition
-
Owen B.A.L., Yang Z., Lai M., Gajek M., Badger J.D., Hayes J.J., Edelman W., Kucherlapati R., Wilson T.M., McMurray C.T. (CAG)n-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition. Nat. Struct. Mol. Biol. 2005, 12:663-670.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 663-670
-
-
Owen, B.A.L.1
Yang, Z.2
Lai, M.3
Gajek, M.4
Badger, J.D.5
Hayes, J.J.6
Edelman, W.7
Kucherlapati, R.8
Wilson, T.M.9
McMurray, C.T.10
-
9
-
-
33646168124
-
Msh3 is a limiting factor in the formation of intergenerational CTG expansions in DM1 transgenic mice
-
Foiry L., Dong L., Savouret C., Hubert L., te Riele H., Junien C., Gourdon G. Msh3 is a limiting factor in the formation of intergenerational CTG expansions in DM1 transgenic mice. Hum. Genet. 2006, 119:520-526.
-
(2006)
Hum. Genet.
, vol.119
, pp. 520-526
-
-
Foiry, L.1
Dong, L.2
Savouret, C.3
Hubert, L.4
te Riele, H.5
Junien, C.6
Gourdon, G.7
-
10
-
-
4444323468
-
Pms2 is a genetic enhancer of trinucleotide CAG·CTG repeat somatic mosaicism: implications for the mechanism of triplet repeat expansion
-
Gomes-Pereira M., Fortune M.T., Ingram L., McAbney J.P., Monckton D.G. Pms2 is a genetic enhancer of trinucleotide CAG·CTG repeat somatic mosaicism: implications for the mechanism of triplet repeat expansion. Hum. Mol. Genet. 2004, 13:1815-1825.
-
(2004)
Hum. Mol. Genet.
, vol.13
, pp. 1815-1825
-
-
Gomes-Pereira, M.1
Fortune, M.T.2
Ingram, L.3
McAbney, J.P.4
Monckton, D.G.5
-
11
-
-
34249337762
-
OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells
-
Kovtun I.V., Liu Y., Bjoras M., Klungland A., Wilson S.H., McMurray C.T. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 2007, 447:447-452.
-
(2007)
Nature
, vol.447
, pp. 447-452
-
-
Kovtun, I.V.1
Liu, Y.2
Bjoras, M.3
Klungland, A.4
Wilson, S.H.5
McMurray, C.T.6
-
12
-
-
81855206487
-
Xpa deficiency reduces CAG trinucleotide repeat instability in neuronal tissues in a mouse model of SCA1
-
Hubert L., Lin Y., Dion V., Wilson J.H. Xpa deficiency reduces CAG trinucleotide repeat instability in neuronal tissues in a mouse model of SCA1. Hum. Mol. Genet. 2011, 20:4822-4830.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 4822-4830
-
-
Hubert, L.1
Lin, Y.2
Dion, V.3
Wilson, J.H.4
-
13
-
-
84868115310
-
Neil1 is a genetic modifier of somatic and germline CAG trinucleotide repeat instability in R6/1 mice
-
Mollersen L., Rowe A.D., Illuzzi J.L., Hildrestrand G.A., Gerhold K.J., Tveteras L., Bjolgerud A., Wilson D.M., Bjoras M., Klungland A. Neil1 is a genetic modifier of somatic and germline CAG trinucleotide repeat instability in R6/1 mice. Hum. Mol. Genet. 2012, 21:4939-4947.
-
(2012)
Hum. Mol. Genet.
, vol.21
, pp. 4939-4947
-
-
Mollersen, L.1
Rowe, A.D.2
Illuzzi, J.L.3
Hildrestrand, G.A.4
Gerhold, K.J.5
Tveteras, L.6
Bjolgerud, A.7
Wilson, D.M.8
Bjoras, M.9
Klungland, A.10
-
14
-
-
84876398399
-
DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae
-
Boiteux S., Jinks-Robertson S. DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae. Genetics 2013, 193:1025-1064.
-
(2013)
Genetics
, vol.193
, pp. 1025-1064
-
-
Boiteux, S.1
Jinks-Robertson, S.2
-
15
-
-
0033556218
-
Nucleotide excision repair affects the stability of long transcribed (CTG*CAG) tracts in an orientation-dependent manner in Escherichia coli
-
Parniewski P., Bacolla A., Jaworski A., Wells R.D. Nucleotide excision repair affects the stability of long transcribed (CTG*CAG) tracts in an orientation-dependent manner in Escherichia coli. Nucleic Acids Res. 1999, 27:616-623.
-
(1999)
Nucleic Acids Res.
, vol.27
, pp. 616-623
-
-
Parniewski, P.1
Bacolla, A.2
Jaworski, A.3
Wells, R.D.4
-
16
-
-
0035903189
-
Involvement of the nucleotide excision repair protein UvrA in instability off CAG·CTG repeat sequences in Escherichia coli
-
Oussatcheva E.A., Hashem V.I., Zou Y., Sinden R.R., Potaman V.N. Involvement of the nucleotide excision repair protein UvrA in instability off CAG·CTG repeat sequences in Escherichia coli. J. Biol. Chem. 2001, 276:30878-30884.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 30878-30884
-
-
Oussatcheva, E.A.1
Hashem, V.I.2
Zou, Y.3
Sinden, R.R.4
Potaman, V.N.5
-
17
-
-
32244438870
-
Transcription promotes contraction of CAG repeat tracts in human cells
-
Lin Y., Dion V., Wilson J.H. Transcription promotes contraction of CAG repeat tracts in human cells. Nat. Struct. Mol. Biol. 2006, 13:179-180.
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 179-180
-
-
Lin, Y.1
Dion, V.2
Wilson, J.H.3
-
18
-
-
34548204316
-
Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair
-
Lin Y., Wilson J.H. Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair. Mol. Cell. Biol. 2007, 27:6209-6217.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 6209-6217
-
-
Lin, Y.1
Wilson, J.H.2
-
19
-
-
34147136044
-
CREB-binding protein modulates repeat instability in a Drosophila model for polyQ disease
-
Jung J., Bonini N. CREB-binding protein modulates repeat instability in a Drosophila model for polyQ disease. Science 2007, 315:1857-1859.
-
(2007)
Science
, vol.315
, pp. 1857-1859
-
-
Jung, J.1
Bonini, N.2
-
20
-
-
57449091694
-
Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes
-
Dragileva E., Hendricks A., Teed A., Gillis T., Lopez E.T., Friedberg E.C., Kucherlapati R., Edelmann W., Lunetta K.L., MacDonald M.E., Wheeler V.C. Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes. Neurobiol. Dis. 2009, 33:37-47.
-
(2009)
Neurobiol. Dis.
, vol.33
, pp. 37-47
-
-
Dragileva, E.1
Hendricks, A.2
Teed, A.3
Gillis, T.4
Lopez, E.T.5
Friedberg, E.C.6
Kucherlapati, R.7
Edelmann, W.8
Lunetta, K.L.9
MacDonald, M.E.10
Wheeler, V.C.11
-
21
-
-
79960328293
-
Cockayne syndrome B protein antagonizes OGG1 in modulating CAG repeat length in vivo
-
Kovtun I.V., Johnson K.O., McMurray C.T. Cockayne syndrome B protein antagonizes OGG1 in modulating CAG repeat length in vivo. Aging 2011, 3:509-514.
-
(2011)
Aging
, vol.3
, pp. 509-514
-
-
Kovtun, I.V.1
Johnson, K.O.2
McMurray, C.T.3
-
22
-
-
84880215877
-
The 26S proteasome drives trinucleotide repeat expansions
-
Concannon C., Lahue R.S. The 26S proteasome drives trinucleotide repeat expansions. Nucleic Acids Res. 2013, 41:6098-6108.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 6098-6108
-
-
Concannon, C.1
Lahue, R.S.2
-
23
-
-
33745763117
-
Distinct functions of the ubiquitin-proteasome pathway influence nucleotide excision repair
-
Gillette T.G., Yu S., Zhou Z., Waters R., Johnston S.A., Reed S.H. Distinct functions of the ubiquitin-proteasome pathway influence nucleotide excision repair. EMBO J. 2006, 25:2529-2538.
-
(2006)
EMBO J.
, vol.25
, pp. 2529-2538
-
-
Gillette, T.G.1
Yu, S.2
Zhou, Z.3
Waters, R.4
Johnston, S.A.5
Reed, S.H.6
-
24
-
-
63049109748
-
The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation
-
Dantuma N.P., Heinen C., Hoogstraten D. The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. DNA Repair (Amst) 2009, 8:449-460.
-
(2009)
DNA Repair (Amst)
, vol.8
, pp. 449-460
-
-
Dantuma, N.P.1
Heinen, C.2
Hoogstraten, D.3
-
25
-
-
84860376787
-
Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome
-
Rosenzweig R., Bronner V., Zhang D., Fushman D., Glickman M.H. Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome. J. Biol. Chem. 2012, 287:14659-14671.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 14659-14671
-
-
Rosenzweig, R.1
Bronner, V.2
Zhang, D.3
Fushman, D.4
Glickman, M.H.5
-
26
-
-
13544261750
-
Rad23 stabilizes Rad4 from degradation by the Ub/proteasome pathway
-
Ortolan T.G., Chen L., Tongaonkar P., Madura K. Rad23 stabilizes Rad4 from degradation by the Ub/proteasome pathway. Nucleic Acids Res. 2004, 32:6490-6500.
-
(2004)
Nucleic Acids Res.
, vol.32
, pp. 6490-6500
-
-
Ortolan, T.G.1
Chen, L.2
Tongaonkar, P.3
Madura, K.4
-
27
-
-
0027367944
-
The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function
-
Watkins J.F., Sung P., Prakash L., Prakash S. The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol. Cell. Biol. 1993, 13:7757-7765.
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 7757-7765
-
-
Watkins, J.F.1
Sung, P.2
Prakash, L.3
Prakash, S.4
-
28
-
-
0032510057
-
Rad23 links DNA repair to the ubiquitin/proteasome pathway
-
Schauber C., Chen L., Tongaonkar P., Vega I., Lambertson D., Potts W., Madura K. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 1998, 391:715-718.
-
(1998)
Nature
, vol.391
, pp. 715-718
-
-
Schauber, C.1
Chen, L.2
Tongaonkar, P.3
Vega, I.4
Lambertson, D.5
Potts, W.6
Madura, K.7
-
29
-
-
0028597439
-
Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress
-
Jamieson D.J., Rivers S.L., Stephen D.W. Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress. Microbiology 1995, 140:3277-3283.
-
(1995)
Microbiology
, vol.140
, pp. 3277-3283
-
-
Jamieson, D.J.1
Rivers, S.L.2
Stephen, D.W.3
-
30
-
-
0024266139
-
New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites
-
Gietz R.D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 1988, 74:527-534.
-
(1988)
Gene
, vol.74
, pp. 527-534
-
-
Gietz, R.D.1
Sugino, A.2
-
31
-
-
84857485218
-
Histone deacetylase complexes promote trinucleotide repeat expansions
-
Debacker K., Frizzell A., Gleeson O., Kirkham-McCarthy L., Mertz T., Lahue R.S. Histone deacetylase complexes promote trinucleotide repeat expansions. PLoS Biol. 2012, 10(12):e1001257. 10.1371/journal.pbio.1001257.
-
(2012)
PLoS Biol.
, vol.10
, Issue.12
-
-
Debacker, K.1
Frizzell, A.2
Gleeson, O.3
Kirkham-McCarthy, L.4
Mertz, T.5
Lahue, R.S.6
-
32
-
-
0026769505
-
Instability of simple sequence DNA in Saccharomyces cerevisiae
-
Henderson S.T., Petes T.D. Instability of simple sequence DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 1992, 12:2749-2757.
-
(1992)
Mol. Cell. Biol.
, vol.12
, pp. 2749-2757
-
-
Henderson, S.T.1
Petes, T.D.2
-
33
-
-
40649114958
-
Mrc1, Tof1 and Csm3 inhibit CAG·CTG repeat instability by at least two mechanisms
-
Razidlo D.F., Lahue R.S. Mrc1, Tof1 and Csm3 inhibit CAG·CTG repeat instability by at least two mechanisms. DNA Repair 2008, 7:633-640.
-
(2008)
DNA Repair
, vol.7
, pp. 633-640
-
-
Razidlo, D.F.1
Lahue, R.S.2
-
34
-
-
0026530466
-
Yeast RAD14 and human xeroderma pigmentosum group A DNA-repair genes encode homologous proteins
-
Bankmann M., Prakash L., Prakash S. Yeast RAD14 and human xeroderma pigmentosum group A DNA-repair genes encode homologous proteins. Nature 1992, 355:555-558.
-
(1992)
Nature
, vol.355
, pp. 555-558
-
-
Bankmann, M.1
Prakash, L.2
Prakash, S.3
-
35
-
-
0034733496
-
Nucleotide excision repair in yeast
-
Prakash S., Prakash L. Nucleotide excision repair in yeast. Mutat. Res. 2000, 451:13-24.
-
(2000)
Mutat. Res.
, vol.451
, pp. 13-24
-
-
Prakash, S.1
Prakash, L.2
-
36
-
-
0028109412
-
RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6
-
van Gool A.J., Verhage R., Swagemakers S.M., van de Putte P., Brouwer J., Troelstra C., Bootsma D., Hoeijmakers J.H. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 1994, 13:5361-5369.
-
(1994)
EMBO J.
, vol.13
, pp. 5361-5369
-
-
van Gool, A.J.1
Verhage, R.2
Swagemakers, S.M.3
van de Putte, P.4
Brouwer, J.5
Troelstra, C.6
Bootsma, D.7
Hoeijmakers, J.H.8
-
37
-
-
84891144185
-
-
http://www.yeastgenome.org/.
-
-
-
-
38
-
-
0036277299
-
Rad23 promotes the targeting of proteolytic substrates to the proteasome
-
Chen L., Madura K. Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol. Cell. Biol. 2002, 22:4902-4913.
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 4902-4913
-
-
Chen, L.1
Madura, K.2
-
39
-
-
0036295955
-
Ubiquitin-like proteins and Rpn10 play cooperative roles in ubiquitin-dependent proteolysis
-
Saeki Y., Saitoh A., Toh-e A., Yokosawa H. Ubiquitin-like proteins and Rpn10 play cooperative roles in ubiquitin-dependent proteolysis. Biochem. Biophys. Res. Comm. 2002, 293:986-992.
-
(2002)
Biochem. Biophys. Res. Comm.
, vol.293
, pp. 986-992
-
-
Saeki, Y.1
Saitoh, A.2
Toh-e, A.3
Yokosawa, H.4
-
40
-
-
3042677641
-
Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome
-
Elsasser S., Chandler-Militello D., Muller B., Hanna J., Finley D. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem. 2004, 279:26817-26822.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 26817-26822
-
-
Elsasser, S.1
Chandler-Militello, D.2
Muller, B.3
Hanna, J.4
Finley, D.5
-
41
-
-
3042764201
-
Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis
-
Kim I., Mi K., Rao H. Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol. Biol. Cell 2004, 15:3357-3365.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 3357-3365
-
-
Kim, I.1
Mi, K.2
Rao, H.3
-
42
-
-
3142566639
-
Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system
-
Verma R., Oania R., Graumann J., Deshaies R.J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 2004, 118:99-110.
-
(2004)
Cell
, vol.118
, pp. 99-110
-
-
Verma, R.1
Oania, R.2
Graumann, J.3
Deshaies, R.J.4
-
43
-
-
0036382885
-
Identification of ubiquitin-like protein-binding subunits of the 26S proteasome
-
Saeki Y., Sone T., Toh-e A., Yokosawa H. Identification of ubiquitin-like protein-binding subunits of the 26S proteasome. Biochem. Biophys. Res. Comm. 2002, 296:813-819.
-
(2002)
Biochem. Biophys. Res. Comm.
, vol.296
, pp. 813-819
-
-
Saeki, Y.1
Sone, T.2
Toh-e, A.3
Yokosawa, H.4
-
44
-
-
0010586475
-
The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair
-
Russell S.J., Reed S.H., Huang W., Friedberg E.C., Johnston S.A. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol. Cell 1999, 3:687-695.
-
(1999)
Mol. Cell
, vol.3
, pp. 687-695
-
-
Russell, S.J.1
Reed, S.H.2
Huang, W.3
Friedberg, E.C.4
Johnston, S.A.5
-
45
-
-
0035876040
-
The 19S complex of the proteasome regulates nucleotide excision repair in yeast
-
Gillette T.G., Huang W., Russell S.J., Reed S.H., Johnston S.A., Friedberg E.C. The 19S complex of the proteasome regulates nucleotide excision repair in yeast. Genes Dev. 2001, 15:1528-1539.
-
(2001)
Genes Dev.
, vol.15
, pp. 1528-1539
-
-
Gillette, T.G.1
Huang, W.2
Russell, S.J.3
Reed, S.H.4
Johnston, S.A.5
Friedberg, E.C.6
-
46
-
-
12244309062
-
Proteolysis of a nucleotide excision repair protein by the 26S proteasome
-
Lommel L., Ortolan T., Chen L., Madura K., Sweder K.S. Proteolysis of a nucleotide excision repair protein by the 26S proteasome. Curr. Genet. 2002, 42:9-20.
-
(2002)
Curr. Genet.
, vol.42
, pp. 9-20
-
-
Lommel, L.1
Ortolan, T.2
Chen, L.3
Madura, K.4
Sweder, K.S.5
-
47
-
-
11344250554
-
Roles of Rad23 protein in yeast nucleotide excision repair
-
Xie Z., Liu S., Zhang Y., Wang Z. Roles of Rad23 protein in yeast nucleotide excision repair. Nucleic Acids Res. 2004, 32:5981-5990.
-
(2004)
Nucleic Acids Res.
, vol.32
, pp. 5981-5990
-
-
Xie, Z.1
Liu, S.2
Zhang, Y.3
Wang, Z.4
-
48
-
-
84872414012
-
Ubiquitylation and degradation of elongating RNA polymerase II: the last resort
-
Wilson M.D., Harreman M., Svejstrup J.Q. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim. Biophys. Acta 2013, 1829:151-157.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 151-157
-
-
Wilson, M.D.1
Harreman, M.2
Svejstrup, J.Q.3
-
49
-
-
11144263684
-
Cellular ubiquitination and proteasomal functions positively modulate mammalian nucleotide excision repair
-
Wang Q.E., Wani M.A., Chen J., Zhu Q., Wani G., El-Mahdy M.A., Wani A.A. Cellular ubiquitination and proteasomal functions positively modulate mammalian nucleotide excision repair. Mol. Carcinog. 2005, 42:53-64.
-
(2005)
Mol. Carcinog.
, vol.42
, pp. 53-64
-
-
Wang, Q.E.1
Wani, M.A.2
Chen, J.3
Zhu, Q.4
Wani, G.5
El-Mahdy, M.A.6
Wani, A.A.7
-
50
-
-
67650463334
-
The vital link between the ubiquitin-proteasome pathway and DNA repair: impact on cancer therapy
-
Motegi A., Murakawa Y., Takeda S. The vital link between the ubiquitin-proteasome pathway and DNA repair: impact on cancer therapy. Cancer Lett. 2009, 283:1-9.
-
(2009)
Cancer Lett.
, vol.283
, pp. 1-9
-
-
Motegi, A.1
Murakawa, Y.2
Takeda, S.3
-
51
-
-
84869005181
-
MutSβ and histone deacetylase complexes promote expansions of trinucleotide repeats in human cells
-
Gannon A.-M.M., Frizzell A., Healy E., Lahue R.S. MutSβ and histone deacetylase complexes promote expansions of trinucleotide repeats in human cells. Nucleic Acids Res. 2012, 40:10324-10333.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 10324-10333
-
-
Gannon, A.-M.M.1
Frizzell, A.2
Healy, E.3
Lahue, R.S.4
-
52
-
-
84867052175
-
Nucleotide excision repair, mismatch repair, and R-loops modulate convergent transcription-induced cell death and repeat instability
-
Lin Y., Wilson J.H. Nucleotide excision repair, mismatch repair, and R-loops modulate convergent transcription-induced cell death and repeat instability. PLoS ONE 2012, 7:e46807. 10.1371/journal.pone.0046807.
-
(2012)
PLoS ONE
, vol.7
-
-
Lin, Y.1
Wilson, J.H.2
-
53
-
-
80052876554
-
The role of XPG in processing (CAG)n/(CTG)n DNA hairpins
-
Hou C., Zhang T., Tian L., Huang J., Gu L., Li G.-M. The role of XPG in processing (CAG)n/(CTG)n DNA hairpins. Cell Biosci. 2011, 1:11-17.
-
(2011)
Cell Biosci.
, vol.1
, pp. 11-17
-
-
Hou, C.1
Zhang, T.2
Tian, L.3
Huang, J.4
Gu, L.5
Li, G.-M.6
-
54
-
-
34248390196
-
Yeast UBL-UBA proteins have partially redundant functions in cell cycle control
-
Diaz-Martinez L.A., Kang Y., Walters K.J., Clarke D.J. Yeast UBL-UBA proteins have partially redundant functions in cell cycle control. Cell Div. 2006, 1:28.
-
(2006)
Cell Div.
, vol.1
, pp. 28
-
-
Diaz-Martinez, L.A.1
Kang, Y.2
Walters, K.J.3
Clarke, D.J.4
-
55
-
-
31344457298
-
UBL/UBA ubiquitin receptor proteins bind a common tetraubiquitin chain
-
Kang Y., Vossler R.A., Diaz-Martinez L.A., Winter N.S., Clarke D.J., Walters K.J. UBL/UBA ubiquitin receptor proteins bind a common tetraubiquitin chain. J. Mol. Biol. 2006, 356:1027-1035.
-
(2006)
J. Mol. Biol.
, vol.356
, pp. 1027-1035
-
-
Kang, Y.1
Vossler, R.A.2
Diaz-Martinez, L.A.3
Winter, N.S.4
Clarke, D.J.5
Walters, K.J.6
-
56
-
-
26944465404
-
Diverse polyubiquitin interaction properties of ubiquitin-associated domains
-
Raasi S., Varadan R., Fushman D., Pickart C.M. Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat. Struct. Mol. Biol. 2005, 12:708-714.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 708-714
-
-
Raasi, S.1
Varadan, R.2
Fushman, D.3
Pickart, C.M.4
-
57
-
-
0033006355
-
Yeast VSM1 encodes a v-SNARE binding protein that may act as a negative regulator of constitutive exocytosis
-
Lustgarten V., Gerst J.E. Yeast VSM1 encodes a v-SNARE binding protein that may act as a negative regulator of constitutive exocytosis. Mol. Cell. Biol. 1999, 19:4480-4494.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 4480-4494
-
-
Lustgarten, V.1
Gerst, J.E.2
-
58
-
-
0030015075
-
Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center
-
Biggins S., Ivanovska I., Rose M.D. Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center. J. Cell Biol. 1996, 133:1331-1346.
-
(1996)
J. Cell Biol.
, vol.133
, pp. 1331-1346
-
-
Biggins, S.1
Ivanovska, I.2
Rose, M.D.3
-
59
-
-
33845764862
-
Ubiquitin receptor proteins hHR23a and hPLIC2 interact
-
Kang Y., Zhang N., Koepp D.M., Walters K.J. Ubiquitin receptor proteins hHR23a and hPLIC2 interact. J. Mol. Biol. 2007, 365:1093-1101.
-
(2007)
J. Mol. Biol.
, vol.365
, pp. 1093-1101
-
-
Kang, Y.1
Zhang, N.2
Koepp, D.M.3
Walters, K.J.4
-
60
-
-
0029053371
-
Trinucleotide repeats that expand in human disease form hairpin structure in vitro
-
Gacy A.M., Goellner G., Juranic N., Macura S., McMurray C.T. Trinucleotide repeats that expand in human disease form hairpin structure in vitro. Cell 1995, 81:533-540.
-
(1995)
Cell
, vol.81
, pp. 533-540
-
-
Gacy, A.M.1
Goellner, G.2
Juranic, N.3
Macura, S.4
McMurray, C.T.5
-
61
-
-
0032581018
-
Influence of hairpins on template reannealing at trinucleotide repeat duplexes: a model for slipped DNA
-
Gacy A.M., McMurray C.T. Influence of hairpins on template reannealing at trinucleotide repeat duplexes: a model for slipped DNA. Biochemistry 1998, 37:9426-9434.
-
(1998)
Biochemistry
, vol.37
, pp. 9426-9434
-
-
Gacy, A.M.1
McMurray, C.T.2
-
62
-
-
77955923161
-
Replication-dependent instability at (CTG)·(CAG) repeat hairpins in human cells
-
Liu G., Chen X., Bissler J.J., Sinden R.R., Leffak M. Replication-dependent instability at (CTG)·(CAG) repeat hairpins in human cells. Nat. Chem. Biol. 2010, 6:652-659.
-
(2010)
Nat. Chem. Biol.
, vol.6
, pp. 652-659
-
-
Liu, G.1
Chen, X.2
Bissler, J.J.3
Sinden, R.R.4
Leffak, M.5
|