메뉴 건너뛰기




Volumn 39, Issue 1, 2014, Pages 25-34

Recognizing the enemy within: Licensing RNA-guided genome defense

Author keywords

Genome defense; PIWI interacting RNA; RNAi; Small interfering RNA; Small RNA; Transposon

Indexed keywords

ANTISENSE OLIGONUCLEOTIDE; DOUBLE STRANDED RNA; RNA;

EID: 84890855567     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2013.10.003     Document Type: Review
Times cited : (26)

References (87)
  • 1
    • 42349096534 scopus 로고    scopus 로고
    • Transposable elements and the evolution of regulatory networks
    • Feschotte C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 2008, 9:397-405.
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 397-405
    • Feschotte, C.1
  • 2
    • 0035500898 scopus 로고    scopus 로고
    • Transposable elements are found in a large number of human protein-coding genes
    • Nekrutenko A., Li W.H. Transposable elements are found in a large number of human protein-coding genes. Trends Genet. 2001, 17:619-621.
    • (2001) Trends Genet. , vol.17 , pp. 619-621
    • Nekrutenko, A.1    Li, W.H.2
  • 3
    • 0037301560 scopus 로고    scopus 로고
    • Origin of a substantial fraction of human regulatory sequences from transposable elements
    • Jordan I.K., et al. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 2003, 19:68-72.
    • (2003) Trends Genet. , vol.19 , pp. 68-72
    • Jordan, I.K.1
  • 4
    • 22744445703 scopus 로고    scopus 로고
    • RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons
    • Kapitonov V.V., Jurka J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol. 2005, 3:e181.
    • (2005) PLoS Biol. , vol.3
    • Kapitonov, V.V.1    Jurka, J.2
  • 5
    • 84860879005 scopus 로고    scopus 로고
    • Human transposon tectonics
    • Burns K.H., Boeke J.D. Human transposon tectonics. Cell 2012, 149:740-752.
    • (2012) Cell , vol.149 , pp. 740-752
    • Burns, K.H.1    Boeke, J.D.2
  • 6
    • 33846704345 scopus 로고    scopus 로고
    • Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity
    • Hedges D.J., Deininger P.L. Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat. Res. 2007, 616:46-59.
    • (2007) Mutat. Res. , vol.616 , pp. 46-59
    • Hedges, D.J.1    Deininger, P.L.2
  • 7
    • 79960636440 scopus 로고    scopus 로고
    • Mobilizing diversity: transposable element insertions in genetic variation and disease
    • O'Donnell K.A., Burns K.H. Mobilizing diversity: transposable element insertions in genetic variation and disease. Mob. DNA 2010, 1:21.
    • (2010) Mob. DNA , vol.1 , pp. 21
    • O'Donnell, K.A.1    Burns, K.H.2
  • 8
    • 51449085579 scopus 로고    scopus 로고
    • Origins and evolution of eukaryotic RNA interference
    • Shabalina S.A., Koonin E.V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 2008, 23:578-587.
    • (2008) Trends Ecol. Evol. , vol.23 , pp. 578-587
    • Shabalina, S.A.1    Koonin, E.V.2
  • 9
    • 58449134534 scopus 로고    scopus 로고
    • Small silencing RNAs: an expanding universe
    • Ghildiyal M., Zamore P.D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 2009, 10:94-108.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 94-108
    • Ghildiyal, M.1    Zamore, P.D.2
  • 10
    • 84872533627 scopus 로고    scopus 로고
    • RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond
    • Castel S.E., Martienssen R.A. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 2013, 14:100-112.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 100-112
    • Castel, S.E.1    Martienssen, R.A.2
  • 11
    • 84864781042 scopus 로고    scopus 로고
    • Function, targets, and evolution of Caenorhabditis elegans piRNAs
    • Bagijn M.P., et al. Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science 2012, 337:574-578.
    • (2012) Science , vol.337 , pp. 574-578
    • Bagijn, M.P.1
  • 12
    • 70350510820 scopus 로고    scopus 로고
    • RNAi in budding yeast
    • Drinnenberg I.A., et al. RNAi in budding yeast. Science 2009, 326:544-550.
    • (2009) Science , vol.326 , pp. 544-550
    • Drinnenberg, I.A.1
  • 13
    • 79952786337 scopus 로고    scopus 로고
    • DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration
    • Kaneko H., et al. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 2011, 471:325-330.
    • (2011) Nature , vol.471 , pp. 325-330
    • Kaneko, H.1
  • 14
    • 0032717319 scopus 로고    scopus 로고
    • The rde-1 gene, RNA interference, and transposon silencing in C. elegans
    • Tabara H., et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 1999, 99:123-132.
    • (1999) Cell , vol.99 , pp. 123-132
    • Tabara, H.1
  • 15
    • 0032739015 scopus 로고    scopus 로고
    • Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD
    • Ketting R.F., et al. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 1999, 99:133-141.
    • (1999) Cell , vol.99 , pp. 133-141
    • Ketting, R.F.1
  • 16
    • 0037123606 scopus 로고    scopus 로고
    • RNA silencing: the genome's immune system
    • Plasterk R.H. RNA silencing: the genome's immune system. Science 2002, 296:1263-1265.
    • (2002) Science , vol.296 , pp. 1263-1265
    • Plasterk, R.H.1
  • 17
    • 0345306117 scopus 로고    scopus 로고
    • Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi
    • Sijen T., Plasterk R.H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 2003, 426:310-314.
    • (2003) Nature , vol.426 , pp. 310-314
    • Sijen, T.1    Plasterk, R.H.2
  • 18
    • 33748363713 scopus 로고    scopus 로고
    • L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells
    • Yang N., Kazazian H.H. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat. Struct. Mol. Biol. 2006, 13:763-771.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 763-771
    • Yang, N.1    Kazazian, H.H.2
  • 19
    • 20044378849 scopus 로고    scopus 로고
    • Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication
    • Slotkin R.K., et al. Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat. Genet. 2005, 37:641-644.
    • (2005) Nat. Genet. , vol.37 , pp. 641-644
    • Slotkin, R.K.1
  • 20
    • 44349159416 scopus 로고    scopus 로고
    • Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes
    • Tam O.H., et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 2008, 453:534-538.
    • (2008) Nature , vol.453 , pp. 534-538
    • Tam, O.H.1
  • 21
    • 0142124075 scopus 로고    scopus 로고
    • Deletion derivatives of the MuDR regulatory transposon of maize encode antisense transcripts but are not dominant-negative regulators of mutator activities
    • Kim S.H., Walbot V. Deletion derivatives of the MuDR regulatory transposon of maize encode antisense transcripts but are not dominant-negative regulators of mutator activities. Plant Cell 2003, 15:2430-2447.
    • (2003) Plant Cell , vol.15 , pp. 2430-2447
    • Kim, S.H.1    Walbot, V.2
  • 22
    • 44349101881 scopus 로고    scopus 로고
    • Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster
    • Okamura K., et al. Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat. Struct. Mol. Biol. 2008, 15:998.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 998
    • Okamura, K.1
  • 23
    • 44449096738 scopus 로고    scopus 로고
    • Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells
    • Ghildiyal M., et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 2008, 320:1077-1081.
    • (2008) Science , vol.320 , pp. 1077-1081
    • Ghildiyal, M.1
  • 24
    • 0035902443 scopus 로고    scopus 로고
    • Instability of repetitive DNA sequences: the role of replication in multiple mechanisms
    • Bzymek M., Lovett S.T. Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:8319-8325.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 8319-8325
    • Bzymek, M.1    Lovett, S.T.2
  • 25
    • 84864920042 scopus 로고    scopus 로고
    • Transposable elements are a significant contributor to tandem repeats in the human genome
    • Ahmed M., Liang P. Transposable elements are a significant contributor to tandem repeats in the human genome. Comp. Funct. Genomics 2012, 2012:947089.
    • (2012) Comp. Funct. Genomics , vol.2012 , pp. 947089
    • Ahmed, M.1    Liang, P.2
  • 26
    • 4043067987 scopus 로고    scopus 로고
    • RNAi-dependent and RNAi-independent mechanisms contribute to the silencing of RIPed sequences in Neurospora crassa
    • Chicas A., et al. RNAi-dependent and RNAi-independent mechanisms contribute to the silencing of RIPed sequences in Neurospora crassa. Nucleic Acids Res. 2004, 32:4237-4243.
    • (2004) Nucleic Acids Res. , vol.32 , pp. 4237-4243
    • Chicas, A.1
  • 27
    • 84870487730 scopus 로고    scopus 로고
    • RNA interference pathways in fungi: mechanisms and functions
    • Chang S-S., et al. RNA interference pathways in fungi: mechanisms and functions. Annu. Rev. Microbiol. 2012, 66:305-323.
    • (2012) Annu. Rev. Microbiol. , vol.66 , pp. 305-323
    • Chang, S.-S.1
  • 28
    • 0026441194 scopus 로고
    • Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences
    • Romano N., Macino G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 1992, 6:3343-3353.
    • (1992) Mol. Microbiol. , vol.6 , pp. 3343-3353
    • Romano, N.1    Macino, G.2
  • 29
    • 78149396720 scopus 로고    scopus 로고
    • The DNA/RNA-dependent RNA polymerase QDE-1 generates aberrant RNA and dsRNA for RNAi in a process requiring replication protein A and a DNA helicase
    • Lee H.C., et al. The DNA/RNA-dependent RNA polymerase QDE-1 generates aberrant RNA and dsRNA for RNAi in a process requiring replication protein A and a DNA helicase. PLoS Biol. 2010, 8:e1000496.
    • (2010) PLoS Biol. , vol.8
    • Lee, H.C.1
  • 30
    • 0029934123 scopus 로고    scopus 로고
    • Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation
    • Cogoni C., et al. Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. EMBO J. 1996, 15:3153-3163.
    • (1996) EMBO J. , vol.15 , pp. 3153-3163
    • Cogoni, C.1
  • 31
    • 39149126696 scopus 로고    scopus 로고
    • The RNA-dependent RNA polymerase essential for post-transcriptional gene silencing in Neurospora crassa interacts with replication protein A
    • Nolan T., et al. The RNA-dependent RNA polymerase essential for post-transcriptional gene silencing in Neurospora crassa interacts with replication protein A. Nucleic Acids Res. 2008, 36:532-538.
    • (2008) Nucleic Acids Res. , vol.36 , pp. 532-538
    • Nolan, T.1
  • 32
    • 84873048282 scopus 로고    scopus 로고
    • Homologous recombination as a mechanism to recognize repetitive DNA sequences in an RNAi pathway
    • Zhang Z., et al. Homologous recombination as a mechanism to recognize repetitive DNA sequences in an RNAi pathway. Genes Dev. 2013, 27:145-150.
    • (2013) Genes Dev. , vol.27 , pp. 145-150
    • Zhang, Z.1
  • 33
    • 0035966290 scopus 로고    scopus 로고
    • Meiotic silencing by unpaired DNA
    • Shiu P.K., et al. Meiotic silencing by unpaired DNA. Cell 2001, 107:905-916.
    • (2001) Cell , vol.107 , pp. 905-916
    • Shiu, P.K.1
  • 34
    • 84877087098 scopus 로고    scopus 로고
    • Identification of small RNAs associated with meiotic silencing by unpaired DNA
    • Hammond T.M., et al. Identification of small RNAs associated with meiotic silencing by unpaired DNA. Genetics 2013, 194:279-284.
    • (2013) Genetics , vol.194 , pp. 279-284
    • Hammond, T.M.1
  • 35
    • 84877097328 scopus 로고    scopus 로고
    • Novel proteins required for meiotic silencing by unpaired DNA and siRNA generation in Neurospora crassa
    • Hammond T.M., et al. Novel proteins required for meiotic silencing by unpaired DNA and siRNA generation in Neurospora crassa. Genetics 2013, 194:91-100.
    • (2013) Genetics , vol.194 , pp. 91-100
    • Hammond, T.M.1
  • 36
    • 2942615243 scopus 로고    scopus 로고
    • Properties of unpaired DNA required for efficient silencing in Neurospora crassa
    • Lee D.W., et al. Properties of unpaired DNA required for efficient silencing in Neurospora crassa. Genetics 2004, 167:131-150.
    • (2004) Genetics , vol.167 , pp. 131-150
    • Lee, D.W.1
  • 37
    • 11244278688 scopus 로고    scopus 로고
    • DNA methylation affects meiotic trans-sensing, not meiotic silencing, in Neurospora
    • Pratt R.J., et al. DNA methylation affects meiotic trans-sensing, not meiotic silencing, in Neurospora. Genetics 2004, 168:1925-1935.
    • (2004) Genetics , vol.168 , pp. 1925-1935
    • Pratt, R.J.1
  • 38
    • 27644457375 scopus 로고    scopus 로고
    • EGO-1, a putative RNA-dependent RNA polymerase, is required for heterochromatin assembly on unpaired dna during C. elegans meiosis
    • Maine E.M., et al. EGO-1, a putative RNA-dependent RNA polymerase, is required for heterochromatin assembly on unpaired dna during C. elegans meiosis. Curr. Biol. 2005, 15:1972-1978.
    • (2005) Curr. Biol. , vol.15 , pp. 1972-1978
    • Maine, E.M.1
  • 39
    • 70149093944 scopus 로고    scopus 로고
    • Regulation of heterochromatin assembly on unpaired chromosomes during Caenorhabditis elegans meiosis by components of a small RNA-mediated pathway
    • She X., et al. Regulation of heterochromatin assembly on unpaired chromosomes during Caenorhabditis elegans meiosis by components of a small RNA-mediated pathway. PLoS Genet. 2009, 5:e1000624.
    • (2009) PLoS Genet. , vol.5
    • She, X.1
  • 40
    • 84874763221 scopus 로고    scopus 로고
    • Stalled spliceosomes are a signal for RNAi-mediated genome defense
    • Dumesic P.A., et al. Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell 2013, 152:957-968.
    • (2013) Cell , vol.152 , pp. 957-968
    • Dumesic, P.A.1
  • 41
    • 78349241121 scopus 로고    scopus 로고
    • Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi
    • Wang X., et al. Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi. Genes Dev. 2010, 24:2566-2582.
    • (2010) Genes Dev. , vol.24 , pp. 2566-2582
    • Wang, X.1
  • 42
    • 84881168180 scopus 로고    scopus 로고
    • BARE retrotransposons are translated and replicated via distinct RNA pools
    • Chang W., et al. BARE retrotransposons are translated and replicated via distinct RNA pools. PLoS ONE 2013, 8:e72270.
    • (2013) PLoS ONE , vol.8
    • Chang, W.1
  • 43
    • 6344229798 scopus 로고    scopus 로고
    • Introns and splicing elements of five diverse fungi
    • Kupfer D.M., et al. Introns and splicing elements of five diverse fungi. Eukaryot. Cell 2004, 3:1088-1100.
    • (2004) Eukaryot. Cell , vol.3 , pp. 1088-1100
    • Kupfer, D.M.1
  • 44
    • 34250707188 scopus 로고    scopus 로고
    • Coevolution of genomic intron number and splice sites
    • Irimia M., et al. Coevolution of genomic intron number and splice sites. Trends Genet. 2007, 23:321-325.
    • (2007) Trends Genet. , vol.23 , pp. 321-325
    • Irimia, M.1
  • 45
    • 84887948238 scopus 로고    scopus 로고
    • The frustrated gene: origins of eukaryotic gene expression
    • Madhani H.D. The frustrated gene: origins of eukaryotic gene expression. Cell 2013, 155:744-749.
    • (2013) Cell , vol.155 , pp. 744-749
    • Madhani, H.D.1
  • 46
    • 46149095029 scopus 로고    scopus 로고
    • Use, tolerance and avoidance of amplified RNA silencing by plants
    • Voinnet O. Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci. 2008, 13:317-328.
    • (2008) Trends Plant Sci. , vol.13 , pp. 317-328
    • Voinnet, O.1
  • 47
    • 79960716754 scopus 로고    scopus 로고
    • Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing
    • Haag J.R., Pikaard C.S. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat. Rev. Mol. Cell Biol. 2011, 12:483-492.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 483-492
    • Haag, J.R.1    Pikaard, C.S.2
  • 48
    • 84877040915 scopus 로고    scopus 로고
    • The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs
    • Nuthikattu S., et al. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs. Plant Physiol. 2013, 162:116-131.
    • (2013) Plant Physiol. , vol.162 , pp. 116-131
    • Nuthikattu, S.1
  • 49
    • 84883454804 scopus 로고    scopus 로고
    • Reconstructing de novo silencing of an active plant retrotransposon
    • Mari-Ordonez A., et al. Reconstructing de novo silencing of an active plant retrotransposon. Nat. Genet. 2013, 45:1029-1039.
    • (2013) Nat. Genet. , vol.45 , pp. 1029-1039
    • Mari-Ordonez, A.1
  • 50
    • 0031412527 scopus 로고    scopus 로고
    • A transcriptionally active state is required for post-transcriptional silencing (cosuppression) of nitrate reductase host genes and transgenes
    • Vaucheret H., et al. A transcriptionally active state is required for post-transcriptional silencing (cosuppression) of nitrate reductase host genes and transgenes. Plant Cell 1997, 9:1495-1504.
    • (1997) Plant Cell , vol.9 , pp. 1495-1504
    • Vaucheret, H.1
  • 51
    • 0034716924 scopus 로고    scopus 로고
    • An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus
    • Dalmay T., et al. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 2000, 101:543-553.
    • (2000) Cell , vol.101 , pp. 543-553
    • Dalmay, T.1
  • 52
    • 34250683941 scopus 로고    scopus 로고
    • Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis
    • Luo Z., Chen Z. Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis. Plant Cell 2007, 19:943-958.
    • (2007) Plant Cell , vol.19 , pp. 943-958
    • Luo, Z.1    Chen, Z.2
  • 53
    • 33750062572 scopus 로고    scopus 로고
    • Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis
    • Herr A.J., et al. Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:14994-15001.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 14994-15001
    • Herr, A.J.1
  • 54
    • 8344240473 scopus 로고    scopus 로고
    • A link between mRNA turnover and RNA interference in Arabidopsis
    • Gazzani S., et al. A link between mRNA turnover and RNA interference in Arabidopsis. Science 2004, 306:1046-1048.
    • (2004) Science , vol.306 , pp. 1046-1048
    • Gazzani, S.1
  • 55
    • 37849008803 scopus 로고    scopus 로고
    • Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors
    • Gy I., et al. Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors. Plant Cell 2007, 19:3451-3461.
    • (2007) Plant Cell , vol.19 , pp. 3451-3461
    • Gy, I.1
  • 56
    • 44449142226 scopus 로고    scopus 로고
    • A link between RNA metabolism and silencing affecting Arabidopsis development
    • Gregory B.D., et al. A link between RNA metabolism and silencing affecting Arabidopsis development. Dev. Cell 2008, 14:854-866.
    • (2008) Dev. Cell , vol.14 , pp. 854-866
    • Gregory, B.D.1
  • 57
    • 33750440526 scopus 로고    scopus 로고
    • A two-hit trigger for siRNA biogenesis in plants
    • Axtell M.J., et al. A two-hit trigger for siRNA biogenesis in plants. Cell 2006, 127:565-577.
    • (2006) Cell , vol.127 , pp. 565-577
    • Axtell, M.J.1
  • 58
    • 80053567859 scopus 로고    scopus 로고
    • Intron splicing suppresses RNA silencing in Arabidopsis
    • Christie M., et al. Intron splicing suppresses RNA silencing in Arabidopsis. Plant J. 2011, 68:159-167.
    • (2011) Plant J. , vol.68 , pp. 159-167
    • Christie, M.1
  • 59
    • 84877300996 scopus 로고    scopus 로고
    • Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants
    • Moreno A.B., et al. Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants. Nucleic Acids Res. 2013, 41:4699-4708.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 4699-4708
    • Moreno, A.B.1
  • 60
    • 84868589615 scopus 로고    scopus 로고
    • Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines
    • Ishizu H., et al. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev. 2012, 26:2361-2373.
    • (2012) Genes Dev. , vol.26 , pp. 2361-2373
    • Ishizu, H.1
  • 61
    • 84880917068 scopus 로고    scopus 로고
    • PIWI-interacting RNAs: from generation to transgenerational epigenetics
    • Luteijn M.J., Ketting R.F. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat. Rev. Genet. 2013, 14:523-534.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 523-534
    • Luteijn, M.J.1    Ketting, R.F.2
  • 62
    • 33947273235 scopus 로고    scopus 로고
    • Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila
    • Brennecke J., et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007, 128:1089-1103.
    • (2007) Cell , vol.128 , pp. 1089-1103
    • Brennecke, J.1
  • 63
    • 78149481868 scopus 로고    scopus 로고
    • The piRNA pathway: a fly's perspective on the guardian of the genome
    • Senti K.A., Brennecke J. The piRNA pathway: a fly's perspective on the guardian of the genome. Trends Genet. 2010, 26:499-509.
    • (2010) Trends Genet. , vol.26 , pp. 499-509
    • Senti, K.A.1    Brennecke, J.2
  • 64
    • 33947390781 scopus 로고    scopus 로고
    • A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila
    • Gunawardane L.S., et al. A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila. Science 2007, 315:1587-1590.
    • (2007) Science , vol.315 , pp. 1587-1590
    • Gunawardane, L.S.1
  • 65
    • 65549118489 scopus 로고    scopus 로고
    • Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies
    • Li C., et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 2009, 137:509-521.
    • (2009) Cell , vol.137 , pp. 509-521
    • Li, C.1
  • 66
    • 84879296229 scopus 로고    scopus 로고
    • Analysis of piRNA-mediated silencing of active TEs in Drosophila melanogaster suggests limits on the evolution of host genome defense
    • Kelleher E.S., Barbash D.A. Analysis of piRNA-mediated silencing of active TEs in Drosophila melanogaster suggests limits on the evolution of host genome defense. Mol. Biol. Evol. 2013, 30:1816-1829.
    • (2013) Mol. Biol. Evol. , vol.30 , pp. 1816-1829
    • Kelleher, E.S.1    Barbash, D.A.2
  • 67
    • 39949083375 scopus 로고    scopus 로고
    • Conserved themes in small-RNA-mediated transposon control
    • Girard A., Hannon G.J. Conserved themes in small-RNA-mediated transposon control. Trends Cell Biol. 2008, 18:136-148.
    • (2008) Trends Cell Biol. , vol.18 , pp. 136-148
    • Girard, A.1    Hannon, G.J.2
  • 68
    • 84055217981 scopus 로고    scopus 로고
    • Production of artificial piRNAs in flies and mice
    • Muerdter F., et al. Production of artificial piRNAs in flies and mice. RNA 2012, 18:42-52.
    • (2012) RNA , vol.18 , pp. 42-52
    • Muerdter, F.1
  • 69
    • 65549105694 scopus 로고    scopus 로고
    • Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary
    • Malone C.D., et al. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 2009, 137:522-535.
    • (2009) Cell , vol.137 , pp. 522-535
    • Malone, C.D.1
  • 70
    • 84455206395 scopus 로고    scopus 로고
    • Adaptation to P element transposon invasion in Drosophila melanogaster
    • Khurana J.S., et al. Adaptation to P element transposon invasion in Drosophila melanogaster. Cell 2011, 147:1551-1563.
    • (2011) Cell , vol.147 , pp. 1551-1563
    • Khurana, J.S.1
  • 71
    • 84883067180 scopus 로고    scopus 로고
    • Profiles of piRNA abundances at emerging or established piRNA loci are determined by local DNA sequences
    • de Vanssay A., et al. Profiles of piRNA abundances at emerging or established piRNA loci are determined by local DNA sequences. RNA Biol. 2013, 10:1233-1239.
    • (2013) RNA Biol. , vol.10 , pp. 1233-1239
    • de Vanssay, A.1
  • 72
    • 0026658653 scopus 로고
    • Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis
    • Karpen G.H., Spradling A.C. Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis. Genetics 1992, 132:737-753.
    • (1992) Genetics , vol.132 , pp. 737-753
    • Karpen, G.H.1    Spradling, A.C.2
  • 73
    • 80051962655 scopus 로고    scopus 로고
    • PiRNA production requires heterochromatin formation in Drosophila
    • Rangan P., et al. piRNA production requires heterochromatin formation in Drosophila. Curr. Biol. 2011, 21:1373-1379.
    • (2011) Curr. Biol. , vol.21 , pp. 1373-1379
    • Rangan, P.1
  • 74
    • 69249225196 scopus 로고    scopus 로고
    • The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters
    • Klattenhoff C., et al. The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell 2009, 138:1137-1149.
    • (2009) Cell , vol.138 , pp. 1137-1149
    • Klattenhoff, C.1
  • 75
    • 84878884615 scopus 로고    scopus 로고
    • De novo piRNA cluster formation in the Drosophila germ line triggered by transgenes containing a transcribed transposon fragment
    • Olovnikov I., et al. De novo piRNA cluster formation in the Drosophila germ line triggered by transgenes containing a transcribed transposon fragment. Nucleic Acids Res. 2013, 41:5757-5768.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 5757-5768
    • Olovnikov, I.1
  • 76
    • 84867064532 scopus 로고    scopus 로고
    • Paramutation in Drosophila linked to emergence of a piRNA-producing locus
    • de Vanssay A., et al. Paramutation in Drosophila linked to emergence of a piRNA-producing locus. Nature 2012, 490:112-115.
    • (2012) Nature , vol.490 , pp. 112-115
    • de Vanssay, A.1
  • 77
    • 33845436047 scopus 로고    scopus 로고
    • Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans
    • Ruby J.G., et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 2006, 127:1193-1207.
    • (2006) Cell , vol.127 , pp. 1193-1207
    • Ruby, J.G.1
  • 78
    • 84871593032 scopus 로고    scopus 로고
    • CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors
    • Gu W., et al. CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell 2012, 151:1488-1500.
    • (2012) Cell , vol.151 , pp. 1488-1500
    • Gu, W.1
  • 79
    • 84875976599 scopus 로고    scopus 로고
    • A conserved upstream motif orchestrates autonomous, germline-enriched expression of Caenorhabditis elegans piRNAs
    • Billi A.C., et al. A conserved upstream motif orchestrates autonomous, germline-enriched expression of Caenorhabditis elegans piRNAs. PLoS Genet. 2013, 9:e1003392.
    • (2013) PLoS Genet. , vol.9
    • Billi, A.C.1
  • 80
    • 46149092009 scopus 로고    scopus 로고
    • Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline
    • Das P.P., et al. Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol. Cell 2008, 31:79-90.
    • (2008) Mol. Cell , vol.31 , pp. 79-90
    • Das, P.P.1
  • 81
    • 84863611417 scopus 로고    scopus 로고
    • PiRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans
    • Ashe A., et al. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 2012, 150:88-99.
    • (2012) Cell , vol.150 , pp. 88-99
    • Ashe, A.1
  • 82
    • 84863624978 scopus 로고    scopus 로고
    • C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts
    • Lee H-C., et al. C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts. Cell 2012, 150:78-87.
    • (2012) Cell , vol.150 , pp. 78-87
    • Lee, H.-C.1
  • 83
    • 84863631177 scopus 로고    scopus 로고
    • PiRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline
    • Shirayama M., et al. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 2012, 150:65-77.
    • (2012) Cell , vol.150 , pp. 65-77
    • Shirayama, M.1
  • 84
    • 70349459257 scopus 로고    scopus 로고
    • The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation
    • Claycomb J.M., et al. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 2009, 139:123-134.
    • (2009) Cell , vol.139 , pp. 123-134
    • Claycomb, J.M.1
  • 85
    • 36249023071 scopus 로고    scopus 로고
    • A unified classification system for eukaryotic transposable elements
    • Wicker T., et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007, 8:973-982.
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 973-982
    • Wicker, T.1
  • 86
    • 1542513556 scopus 로고    scopus 로고
    • Mobile elements: drivers of genome evolution
    • Kazazian H.H. Mobile elements: drivers of genome evolution. Science 2004, 303:1626-1632.
    • (2004) Science , vol.303 , pp. 1626-1632
    • Kazazian, H.H.1
  • 87
    • 84869016142 scopus 로고    scopus 로고
    • UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery
    • Zhang F., et al. UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery. Cell 2012, 151:871-884.
    • (2012) Cell , vol.151 , pp. 871-884
    • Zhang, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.