-
1
-
-
51049090204
-
Nanoparticle therapeutics: an emerging treatment modality for cancer
-
Davis M.E., et al. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7:771-782.
-
(2008)
Nat. Rev. Drug Discov.
, vol.7
, pp. 771-782
-
-
Davis, M.E.1
-
2
-
-
77955175216
-
Strategies in the design of nanoparticles for therapeutic applications
-
Petros R.A., DeSimone J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9:615-627.
-
(2010)
Nat. Rev. Drug Discov.
, vol.9
, pp. 615-627
-
-
Petros, R.A.1
DeSimone, J.M.2
-
3
-
-
84855961163
-
Nanoparticle delivery of cancer drugs
-
Wang A.Z., et al. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 2012, 63:185-198.
-
(2012)
Annu. Rev. Med.
, vol.63
, pp. 185-198
-
-
Wang, A.Z.1
-
4
-
-
84873252557
-
Liposomal drug delivery systems: From concept to clinical applications
-
Allen T.M., Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65:36-48.
-
(2013)
Adv. Drug Deliv. Rev.
, vol.65
, pp. 36-48
-
-
Allen, T.M.1
Cullis, P.R.2
-
5
-
-
84869496799
-
Macromolecular therapeutics in cancer treatment: the EPR effect and beyond
-
Maeda H. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J. Control. Release 2012, 164:138-144.
-
(2012)
J. Control. Release
, vol.164
, pp. 138-144
-
-
Maeda, H.1
-
6
-
-
84860471928
-
Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research
-
Egusquiaguirre S.P., et al. Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin. Transl. Oncol. 2012, 14:83-93.
-
(2012)
Clin. Transl. Oncol.
, vol.14
, pp. 83-93
-
-
Egusquiaguirre, S.P.1
-
7
-
-
55949126429
-
Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats
-
Longmire M., et al. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 2008, 3:703-717.
-
(2008)
Nanomedicine
, vol.3
, pp. 703-717
-
-
Longmire, M.1
-
9
-
-
84861669644
-
Doxil® - The first FDA-approved nano-drug: lessons learned
-
Barenholz Y.(Chezy) Doxil® - The first FDA-approved nano-drug: lessons learned. J. Control. Release 2012, 160:117-134.
-
(2012)
J. Control. Release
, vol.160
, pp. 117-134
-
-
Barenholz, Y.1
-
10
-
-
41349087510
-
Clinical pharmacology of liposomal anthracyclines: focus on pegylated liposomal doxorubicin
-
Solomon R., Gabizon A. Clinical pharmacology of liposomal anthracyclines: focus on pegylated liposomal doxorubicin. Clin. Lymphoma Myelom 2008, 8:21-32.
-
(2008)
Clin. Lymphoma Myelom
, vol.8
, pp. 21-32
-
-
Solomon, R.1
Gabizon, A.2
-
11
-
-
70449713823
-
Vincristine: can its therapeutic index be enhanced?
-
Moore A., Pinkerton R. Vincristine: can its therapeutic index be enhanced?. Pediatr. Blood Cancer 2009, 53:1180-1187.
-
(2009)
Pediatr. Blood Cancer
, vol.53
, pp. 1180-1187
-
-
Moore, A.1
Pinkerton, R.2
-
12
-
-
84875873258
-
Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine
-
Silverman J.A., Deitcher S.R. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol. 2013, 71:555-564.
-
(2013)
Cancer Chemother. Pharmacol.
, vol.71
, pp. 555-564
-
-
Silverman, J.A.1
Deitcher, S.R.2
-
13
-
-
84856638259
-
Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy
-
Chang H-I., Yeh M-K. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int. J. Nanomed. 2012, 7:49-60.
-
(2012)
Int. J. Nanomed.
, vol.7
, pp. 49-60
-
-
Chang, H.-I.1
Yeh, M.-K.2
-
14
-
-
84867366635
-
Liposomal paclitaxel formulations
-
Koudelka S., Turánek J. Liposomal paclitaxel formulations. J. Control. Release 2012, 163:322-334.
-
(2012)
J. Control. Release
, vol.163
, pp. 322-334
-
-
Koudelka, S.1
Turánek, J.2
-
15
-
-
14644399827
-
Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release
-
Andresen T.L., et al. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog. Lipid Res. 2005, 44:68-97.
-
(2005)
Prog. Lipid Res.
, vol.44
, pp. 68-97
-
-
Andresen, T.L.1
-
16
-
-
70350292588
-
Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer
-
Malam Y., et al. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 2009, 30:592-599.
-
(2009)
Trends Pharmacol. Sci.
, vol.30
, pp. 592-599
-
-
Malam, Y.1
-
17
-
-
0035085192
-
Liposome application: problems and prospects
-
Barenholz Y. Liposome application: problems and prospects. Curr. Opin. Colloid Interface Sci. 2001, 6:66-77.
-
(2001)
Curr. Opin. Colloid Interface Sci.
, vol.6
, pp. 66-77
-
-
Barenholz, Y.1
-
18
-
-
0033400567
-
Pharmacological studies of cisplatin encapsulated in long-circulating liposomes in mouse tumor models
-
Bandak S., et al. Pharmacological studies of cisplatin encapsulated in long-circulating liposomes in mouse tumor models. Anticancer Drugs 1999, 10:911-920.
-
(1999)
Anticancer Drugs
, vol.10
, pp. 911-920
-
-
Bandak, S.1
-
19
-
-
78049339527
-
Enzyme-triggered nanomedicine: drug release strategies in cancer therapy
-
Andresen T.L., et al. Enzyme-triggered nanomedicine: drug release strategies in cancer therapy. Mol. Membr. Biol. 2010, 27:353-363.
-
(2010)
Mol. Membr. Biol.
, vol.27
, pp. 353-363
-
-
Andresen, T.L.1
-
20
-
-
39649120532
-
A review of stimuli-responsive nanocarriers for drug and gene delivery
-
Ganta S., et al. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126:187-204.
-
(2008)
J. Control. Release
, vol.126
, pp. 187-204
-
-
Ganta, S.1
-
21
-
-
0035981099
-
Phototriggering of liposomal drug delivery systems
-
Shum P., et al. Phototriggering of liposomal drug delivery systems. Adv. Drug Deliv. Rev. 2001, 53:273-284.
-
(2001)
Adv. Drug Deliv. Rev.
, vol.53
, pp. 273-284
-
-
Shum, P.1
-
22
-
-
84875125027
-
Hyperthermia-induced drug targeting
-
May J.P., Li S-D. Hyperthermia-induced drug targeting. Expert Opin. Drug Deliv. 2013, 10:511-527.
-
(2013)
Expert Opin. Drug Deliv.
, vol.10
, pp. 511-527
-
-
May, J.P.1
Li, S.-D.2
-
23
-
-
84877938962
-
Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy
-
Li L., et al. Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy. J. Control. Release 2013, 168:142-150.
-
(2013)
J. Control. Release
, vol.168
, pp. 142-150
-
-
Li, L.1
-
24
-
-
33745077090
-
Hyperthermia mediated liposomal drug delivery
-
Ponce A.M., et al. Hyperthermia mediated liposomal drug delivery. Int. J. Hyperthermia 2006, 22:205-213.
-
(2006)
Int. J. Hyperthermia
, vol.22
, pp. 205-213
-
-
Ponce, A.M.1
-
25
-
-
67349274695
-
Ultrasound triggered release of cisplatin from liposomes in murine tumors
-
Schroeder A., et al. Ultrasound triggered release of cisplatin from liposomes in murine tumors. J. Control. Release 2009, 137:63-68.
-
(2009)
J. Control. Release
, vol.137
, pp. 63-68
-
-
Schroeder, A.1
-
26
-
-
70349783718
-
Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes
-
Schroeder A., et al. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem. Phys. Lipids 2009, 162:1-16.
-
(2009)
Chem. Phys. Lipids
, vol.162
, pp. 1-16
-
-
Schroeder, A.1
-
27
-
-
0038797831
-
Ligand-targeted liposomal anticancer drugs
-
Sapra P., Allen T.M. Ligand-targeted liposomal anticancer drugs. Prog. Lipid Res. 2003, 42:439-462.
-
(2003)
Prog. Lipid Res.
, vol.42
, pp. 439-462
-
-
Sapra, P.1
Allen, T.M.2
-
28
-
-
84864125045
-
Peptides as targeting elements and tissue penetration devices for nanoparticles
-
Ruoslahti E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv. Mater. 2012, 24:3747-3756.
-
(2012)
Adv. Mater.
, vol.24
, pp. 3747-3756
-
-
Ruoslahti, E.1
-
29
-
-
84858665557
-
Endocytosis at the nanoscale
-
Canton I., Battaglia G. Endocytosis at the nanoscale. Chem. Soc. Rev. 2012, 41:2718-2739.
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 2718-2739
-
-
Canton, I.1
Battaglia, G.2
-
30
-
-
84864258079
-
The effect of nanoparticle size, shape, and surface chemistry on biological systems
-
Albanese A., et al. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14:1-16.
-
(2012)
Annu. Rev. Biomed. Eng.
, vol.14
, pp. 1-16
-
-
Albanese, A.1
-
31
-
-
77249104877
-
Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles
-
He C., et al. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31:3657-3666.
-
(2010)
Biomaterials
, vol.31
, pp. 3657-3666
-
-
He, C.1
-
32
-
-
84860774962
-
Challenges in development of targeted liposomal therapeutics
-
Sawant R.R., Torchilin V.P. Challenges in development of targeted liposomal therapeutics. AAPS J. 2012, 14:303-315.
-
(2012)
AAPS J.
, vol.14
, pp. 303-315
-
-
Sawant, R.R.1
Torchilin, V.P.2
-
33
-
-
79960925147
-
Targeted drug delivery to tumors: myths, reality and possibility
-
Bae Y.H., Park K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release 2011, 153:198-205.
-
(2011)
J. Control. Release
, vol.153
, pp. 198-205
-
-
Bae, Y.H.1
Park, K.2
-
34
-
-
84876742678
-
Nanomedicine and the complement paradigm
-
Moghimi S.M., Farhangrazi Z.S. Nanomedicine and the complement paradigm. Nanomedicine 2013, 9:458-460.
-
(2013)
Nanomedicine
, vol.9
, pp. 458-460
-
-
Moghimi, S.M.1
Farhangrazi, Z.S.2
-
35
-
-
77954313055
-
Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting
-
Li S-D., Huang L. Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J. Control. Release 2010, 145:178-181.
-
(2010)
J. Control. Release
, vol.145
, pp. 178-181
-
-
Li, S.-D.1
Huang, L.2
-
36
-
-
0041430798
-
Multiple injections of pegylated liposomal doxorubicin: pharmacokinetics and therapeutic activity
-
Charrois G.J.R., Allen T.M. Multiple injections of pegylated liposomal doxorubicin: pharmacokinetics and therapeutic activity. J. Pharmacol. Exp. Ther. 2003, 306:1058-1067.
-
(2003)
J. Pharmacol. Exp. Ther.
, vol.306
, pp. 1058-1067
-
-
Charrois, G.J.R.1
Allen, T.M.2
-
37
-
-
0031911294
-
Hydration of polyethylene glycol-grafted liposomes
-
Tirosh O., et al. Hydration of polyethylene glycol-grafted liposomes. Biophys. J. 1998, 74:1371-1379.
-
(1998)
Biophys. J.
, vol.74
, pp. 1371-1379
-
-
Tirosh, O.1
-
38
-
-
34249044829
-
Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding
-
Dos Santos N., et al. Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. Biochim. Biophys. Acta 2007, 1768:1367-1377.
-
(2007)
Biochim. Biophys. Acta
, vol.1768
, pp. 1367-1377
-
-
Dos Santos, N.1
-
39
-
-
79951881286
-
Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice
-
Maldiney T., et al. Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano 2011, 5:854-862.
-
(2011)
ACS Nano
, vol.5
, pp. 854-862
-
-
Maldiney, T.1
-
40
-
-
13444266484
-
Effect of MePEG molecular weight and particle size on in vitro release of tumor necrosis factor-α-loaded nanoparticles
-
Fang C., et al. Effect of MePEG molecular weight and particle size on in vitro release of tumor necrosis factor-α-loaded nanoparticles. Acta Pharmacol. Sin. 2005, 26:242-249.
-
(2005)
Acta Pharmacol. Sin.
, vol.26
, pp. 242-249
-
-
Fang, C.1
-
41
-
-
84856436072
-
Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake
-
Walkey C.D., et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 2011, 134:2139-2147.
-
(2011)
J. Am. Chem. Soc.
, vol.134
, pp. 2139-2147
-
-
Walkey, C.D.1
-
42
-
-
84867468134
-
PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics
-
Perry J.L., et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 2012, 12:5304-5310.
-
(2012)
Nano Lett.
, vol.12
, pp. 5304-5310
-
-
Perry, J.L.1
-
43
-
-
0032713936
-
Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: is surface coating with polyethylene glycol beneficial?
-
Hong R., et al. Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: is surface coating with polyethylene glycol beneficial?. Clin. Cancer Res. 1999, 5:3645-3652.
-
(1999)
Clin. Cancer Res.
, vol.5
, pp. 3645-3652
-
-
Hong, R.1
-
44
-
-
0035078410
-
Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate
-
Guo X., Szoka F.C. Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate. Bioconjug. Chem. 2001, 12:291-300.
-
(2001)
Bioconjug. Chem.
, vol.12
, pp. 291-300
-
-
Guo, X.1
Szoka, F.C.2
-
45
-
-
0030591442
-
Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphosphatidylethanolamine vesicles triggered by cleavage of surface-grafted poly(ethylene glycol)
-
Kirpotin D., et al. Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphosphatidylethanolamine vesicles triggered by cleavage of surface-grafted poly(ethylene glycol). FEBS Lett. 1996, 388:115-118.
-
(1996)
FEBS Lett.
, vol.388
, pp. 115-118
-
-
Kirpotin, D.1
-
46
-
-
0035575844
-
Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells
-
Ishida T., et al. Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim. Biophys. Acta 2001, 1515:144-158.
-
(2001)
Biochim. Biophys. Acta
, vol.1515
, pp. 144-158
-
-
Ishida, T.1
-
48
-
-
84863369402
-
Nanoparticles disguised as red blood cells to evade the immune system
-
Fang R.H., et al. Nanoparticles disguised as red blood cells to evade the immune system. Expert Opin. Biol. Ther. 2012, 12:385-389.
-
(2012)
Expert Opin. Biol. Ther.
, vol.12
, pp. 385-389
-
-
Fang, R.H.1
-
49
-
-
84871730525
-
Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions
-
Parodi A., et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 2013, 8:61-68.
-
(2013)
Nat. Nanotechnol.
, vol.8
, pp. 61-68
-
-
Parodi, A.1
-
50
-
-
33845593187
-
Effect of coupling of albumin onto surface of PEG liposome on its in vivo disposition
-
Furumoto K., et al. Effect of coupling of albumin onto surface of PEG liposome on its in vivo disposition. Int. J. Pharm. 2007, 329:110-116.
-
(2007)
Int. J. Pharm.
, vol.329
, pp. 110-116
-
-
Furumoto, K.1
-
51
-
-
84871512864
-
Human serum albumin-coated lipid nanoparticles for delivery of siRNA to breast cancer
-
Piao L., et al. Human serum albumin-coated lipid nanoparticles for delivery of siRNA to breast cancer. Nanomedicine 2013, 9:122-129.
-
(2013)
Nanomedicine
, vol.9
, pp. 122-129
-
-
Piao, L.1
-
52
-
-
84874169973
-
Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles
-
Rodriguez P.L., et al. Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013, 339:971-975.
-
(2013)
Science
, vol.339
, pp. 971-975
-
-
Rodriguez, P.L.1
-
53
-
-
0031021149
-
Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro
-
Kirpotin D., et al. Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 1997, 36:66-75.
-
(1997)
Biochemistry
, vol.36
, pp. 66-75
-
-
Kirpotin, D.1
-
54
-
-
33746172167
-
Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models
-
Kirpotin D.B., et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006, 66:6732-6740.
-
(2006)
Cancer Res.
, vol.66
, pp. 6732-6740
-
-
Kirpotin, D.B.1
-
55
-
-
84876557641
-
A systematic analysis of peptide linker length and liposomal polyethylene glycol coating on cellular uptake of peptide-targeted liposomes
-
Stefanick J.F., et al. A systematic analysis of peptide linker length and liposomal polyethylene glycol coating on cellular uptake of peptide-targeted liposomes. ACS Nano 2013, 7:2935-2947.
-
(2013)
ACS Nano
, vol.7
, pp. 2935-2947
-
-
Stefanick, J.F.1
-
56
-
-
0036518616
-
Targeting hepatocytes for drug and gene delivery: emerging novel approaches and applications
-
Wu J., et al. Targeting hepatocytes for drug and gene delivery: emerging novel approaches and applications. Front. Biosci. 2002, 7:717-725.
-
(2002)
Front. Biosci.
, vol.7
, pp. 717-725
-
-
Wu, J.1
-
57
-
-
0034000572
-
In vivo gene delivery to the liver using novel galactosylated cationic liposomes
-
Kawakami S., et al. In vivo gene delivery to the liver using novel galactosylated cationic liposomes. Pharm. Res. 2000, 17:306-313.
-
(2000)
Pharm. Res.
, vol.17
, pp. 306-313
-
-
Kawakami, S.1
-
58
-
-
80051509854
-
Galactose-modified cationic liposomes as a liver-targeting delivery system for small interfering RNA
-
Sonoke S., et al. Galactose-modified cationic liposomes as a liver-targeting delivery system for small interfering RNA. Biol. Pharm. Bull. 2011, 34:1338-1342.
-
(2011)
Biol. Pharm. Bull.
, vol.34
, pp. 1338-1342
-
-
Sonoke, S.1
-
59
-
-
77954819567
-
Sustained liver targeting and improved antiproliferative effect of doxorubicin liposomes modified with galactosylated lipid and PEG-lipid
-
Wang S., et al. Sustained liver targeting and improved antiproliferative effect of doxorubicin liposomes modified with galactosylated lipid and PEG-lipid. AAPS PharmSciTech 2010, 11:870-877.
-
(2010)
AAPS PharmSciTech
, vol.11
, pp. 870-877
-
-
Wang, S.1
-
60
-
-
0033106119
-
Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies
-
Gabizon A., et al. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug. Chem. 1999, 10:289-298.
-
(1999)
Bioconjug. Chem.
, vol.10
, pp. 289-298
-
-
Gabizon, A.1
-
61
-
-
58149340585
-
Design of folate-linked liposomal doxorubicin to its antitumor effect in mice
-
Yamada A., et al. Design of folate-linked liposomal doxorubicin to its antitumor effect in mice. Clin. Cancer Res. 2008, 14:8161-8168.
-
(2008)
Clin. Cancer Res.
, vol.14
, pp. 8161-8168
-
-
Yamada, A.1
-
62
-
-
0028001056
-
Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis
-
Lee R.J., Low P.S. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J. Biol. Chem. 1994, 269:3198-3204.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 3198-3204
-
-
Lee, R.J.1
Low, P.S.2
-
63
-
-
84864046050
-
Rationally engineered nanoparticles target multiple myeloma cells, overcome cell-adhesion-mediated drug resistance, and show enhanced efficacy in vivo
-
Kiziltepe T., et al. Rationally engineered nanoparticles target multiple myeloma cells, overcome cell-adhesion-mediated drug resistance, and show enhanced efficacy in vivo. Blood Cancer J. 2012, 2:e64.
-
(2012)
Blood Cancer J.
, vol.2
-
-
Kiziltepe, T.1
-
64
-
-
1842478453
-
Improved outcome when B-cell lymphoma is treated with combinations of immunoliposomal anticancer drugs targeted to both the CD19 and CD20 epitopes
-
Sapra P., Allen T.M. Improved outcome when B-cell lymphoma is treated with combinations of immunoliposomal anticancer drugs targeted to both the CD19 and CD20 epitopes. Clin. Cancer Res. 2004, 10:2530-2537.
-
(2004)
Clin. Cancer Res.
, vol.10
, pp. 2530-2537
-
-
Sapra, P.1
Allen, T.M.2
-
65
-
-
38549093524
-
Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab' fragments and single chain Fv
-
Cheng W.W.K., Allen T.M. Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab' fragments and single chain Fv. J. Control. Release 2008, 126:50-58.
-
(2008)
J. Control. Release
, vol.126
, pp. 50-58
-
-
Cheng, W.W.K.1
Allen, T.M.2
-
66
-
-
0001160175
-
In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma
-
Lopes de Menezes D.E., et al. In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res. 1998, 58:3320-3330.
-
(1998)
Cancer Res.
, vol.58
, pp. 3320-3330
-
-
Lopes de Menezes, D.E.1
-
67
-
-
19444362857
-
Liposomes targeted via two different antibodies: assay, B-cell binding and cytotoxicity
-
Laginha K., et al. Liposomes targeted via two different antibodies: assay, B-cell binding and cytotoxicity. Biochim. Biophys. Acta 2005, 1711:25-32.
-
(2005)
Biochim. Biophys. Acta
, vol.1711
, pp. 25-32
-
-
Laginha, K.1
-
68
-
-
49749126336
-
Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging?
-
Saad M., et al. Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging?. J. Control. Release 2008, 130:107-114.
-
(2008)
J. Control. Release
, vol.130
, pp. 107-114
-
-
Saad, M.1
-
69
-
-
79952115005
-
Luteinizing hormone-releasing hormone receptor-mediated delivery of mitoxantrone using LHRH analogs modified with PEGylated liposomes
-
He Y., et al. Luteinizing hormone-releasing hormone receptor-mediated delivery of mitoxantrone using LHRH analogs modified with PEGylated liposomes. Int. J. Nanomed. 2010, 5:697-705.
-
(2010)
Int. J. Nanomed.
, vol.5
, pp. 697-705
-
-
He, Y.1
-
71
-
-
0029951471
-
Targeted delivery of doxorubicin via stericallystabilized immunoliposomes- pharmacokinetics and biodistribution in tumor-bearing mice
-
Emanuel N., et al. Targeted delivery of doxorubicin via stericallystabilized immunoliposomes- pharmacokinetics and biodistribution in tumor-bearing mice. Pharm. Res. 1996, 13:861-868.
-
(1996)
Pharm. Res.
, vol.13
, pp. 861-868
-
-
Emanuel, N.1
-
72
-
-
0029785716
-
Immunoliposome-mediated targeting of doxorubicin to human ovarian
-
Vingerhoeds M.H., et al. Immunoliposome-mediated targeting of doxorubicin to human ovarian. Br. J. Cancer 1996, 74:1023-1029.
-
(1996)
Br. J. Cancer
, vol.74
, pp. 1023-1029
-
-
Vingerhoeds, M.H.1
-
73
-
-
0029828939
-
Targeting of stealth liposomes to erbB-2 (Her/2) receptor: in vitro and in vivo studies
-
Goren D., et al. Targeting of stealth liposomes to erbB-2 (Her/2) receptor: in vitro and in vivo studies. Br. J. Cancer 1996, 74:1749-1756.
-
(1996)
Br. J. Cancer
, vol.74
, pp. 1749-1756
-
-
Goren, D.1
-
74
-
-
0346333236
-
In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice
-
Gabizon A., et al. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin. Cancer Res. 2003, 9:6551-6559.
-
(2003)
Clin. Cancer Res.
, vol.9
, pp. 6551-6559
-
-
Gabizon, A.1
-
75
-
-
0033870271
-
Oncotic pressure in solid tumors is elevated oncotic pressure in solid tumors is elevated
-
Stohrer M., et al. Oncotic pressure in solid tumors is elevated oncotic pressure in solid tumors is elevated. Cancer Res. 2000, 60:4251-4255.
-
(2000)
Cancer Res.
, vol.60
, pp. 4251-4255
-
-
Stohrer, M.1
-
76
-
-
0026684815
-
Rapid tumor penetration of a single-chain fv and comparison with other immunoglobulin forms
-
Yokota T., et al. Rapid tumor penetration of a single-chain fv and comparison with other immunoglobulin forms. Cancer Res. 1992, 52:3402-3408.
-
(1992)
Cancer Res.
, vol.52
, pp. 3402-3408
-
-
Yokota, T.1
-
77
-
-
3042825003
-
Cancer-specific ligands identified from screening of peptide-display libraries
-
Mori T. Cancer-specific ligands identified from screening of peptide-display libraries. Curr. Pharm. Des. 2004, 10:2335-2343.
-
(2004)
Curr. Pharm. Des.
, vol.10
, pp. 2335-2343
-
-
Mori, T.1
-
78
-
-
41649119539
-
Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery
-
Lo A., et al. Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery. Mol. Cancer Ther. 2008, 7:579-589.
-
(2008)
Mol. Cancer Ther.
, vol.7
, pp. 579-589
-
-
Lo, A.1
-
79
-
-
70749103751
-
Tissue-penetrating delivery of compounds and nanoparticles into tumors
-
Sugahara K.N., et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 2009, 16:510-520.
-
(2009)
Cancer Cell
, vol.16
, pp. 510-520
-
-
Sugahara, K.N.1
-
80
-
-
3042687629
-
Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells
-
Laakkonen P., et al. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:9381-9396.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 9381-9396
-
-
Laakkonen, P.1
-
81
-
-
84865258883
-
Transtumoral targeting enabled by a novel neuropilin-binding peptide
-
Roth L., et al. Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene 2012, 31:3754-3763.
-
(2012)
Oncogene
, vol.31
, pp. 3754-3763
-
-
Roth, L.1
-
82
-
-
5644276383
-
Delivery of bioactive molecules into the cell: the Trojan horse approach
-
Dietz G.P.H., Bähr M. Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol. Cell. Neurosci. 2004, 27:85-131.
-
(2004)
Mol. Cell. Neurosci.
, vol.27
, pp. 85-131
-
-
Dietz, G.P.H.1
Bähr, M.2
-
83
-
-
84876513679
-
Targeting platelet function to improve drug delivery
-
Demers M., Wagner D.D. Targeting platelet function to improve drug delivery. Oncoimmunology 2012, 1:100-102.
-
(2012)
Oncoimmunology
, vol.1
, pp. 100-102
-
-
Demers, M.1
Wagner, D.D.2
-
84
-
-
84864211163
-
Nano/microscale motors: biomedical opportunities and challenges
-
Wang J., Gao W. Nano/microscale motors: biomedical opportunities and challenges. ACS Nano 2012, 6:5745-5751.
-
(2012)
ACS Nano
, vol.6
, pp. 5745-5751
-
-
Wang, J.1
Gao, W.2
-
85
-
-
0036555095
-
PEG-immunoliposome
-
Maruyama K. PEG-immunoliposome. Biosci. Rep. 2002, 22:251-266.
-
(2002)
Biosci. Rep.
, vol.22
, pp. 251-266
-
-
Maruyama, K.1
-
86
-
-
84884949772
-
Enhanced cellular uptake of through increased peptide hydrophilicity and optimized ethylene glycol peptide-linker length
-
Stefanik J.F., et al. Enhanced cellular uptake of through increased peptide hydrophilicity and optimized ethylene glycol peptide-linker length. ACS Nano 2013, 7:8115-8127.
-
(2013)
ACS Nano
, vol.7
, pp. 8115-8127
-
-
Stefanik, J.F.1
-
87
-
-
84869103855
-
Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities
-
Cheng Z., et al. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 2012, 338:903-910.
-
(2012)
Science
, vol.338
, pp. 903-910
-
-
Cheng, Z.1
-
88
-
-
84873564939
-
Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface
-
Salvati A., et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 2013, 8:137-143.
-
(2013)
Nat. Nanotechnol.
, vol.8
, pp. 137-143
-
-
Salvati, A.1
-
89
-
-
34848883058
-
Decreased circulation time offsets increased efficacy of PEGylated nanocarriers targeting folate receptors of glioma
-
McNeeley K.M., et al. Decreased circulation time offsets increased efficacy of PEGylated nanocarriers targeting folate receptors of glioma. Nanotechnology 2007, 18:385101.
-
(2007)
Nanotechnology
, vol.18
, pp. 385101
-
-
McNeeley, K.M.1
-
90
-
-
84872156261
-
Masking and triggered unmasking of targeting ligands on liposomal chemotherapy selectively suppress tumor growth in vivo
-
Bandekar A., et al. Masking and triggered unmasking of targeting ligands on liposomal chemotherapy selectively suppress tumor growth in vivo. Mol. Pharm. 2013, 10:152-160.
-
(2013)
Mol. Pharm.
, vol.10
, pp. 152-160
-
-
Bandekar, A.1
-
91
-
-
67349259953
-
Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors
-
McNeeley K.M., et al. Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors. Biomaterials 2009, 30:3986-3995.
-
(2009)
Biomaterials
, vol.30
, pp. 3986-3995
-
-
McNeeley, K.M.1
-
92
-
-
82955240708
-
Targeted delivery of cargoes into a murine solid tumor by a cell-penetrating peptide and cleavable poly(ethylene glycol) comodified liposomal delivery system via systemic administration
-
Kuai R., et al. Targeted delivery of cargoes into a murine solid tumor by a cell-penetrating peptide and cleavable poly(ethylene glycol) comodified liposomal delivery system via systemic administration. Mol. Pharm. 2011, 8:2151-2161.
-
(2011)
Mol. Pharm.
, vol.8
, pp. 2151-2161
-
-
Kuai, R.1
-
93
-
-
84864666657
-
Size-controlled, dual-ligand modified liposomes that target the tumor vasculature show promise for use in drug-resistant cancer therapy
-
Takara K., et al. Size-controlled, dual-ligand modified liposomes that target the tumor vasculature show promise for use in drug-resistant cancer therapy. J. Control. Res. 2012, 162:225-232.
-
(2012)
J. Control. Res.
, vol.162
, pp. 225-232
-
-
Takara, K.1
-
94
-
-
0036554863
-
Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery
-
Park J.W., et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res. 2002, 8:1172-1181.
-
(2002)
Clin. Cancer Res.
, vol.8
, pp. 1172-1181
-
-
Park, J.W.1
-
95
-
-
0037135703
-
Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis
-
Nielsen U.B., et al. Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim. Biophys. Acta 2002, 1591:109-118.
-
(2002)
Biochim. Biophys. Acta
, vol.1591
, pp. 109-118
-
-
Nielsen, U.B.1
-
96
-
-
84861757024
-
HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity
-
Reynolds J.G., et al. HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity. Toxicol. Appl. Pharmacol. 2012, 262:1-10.
-
(2012)
Toxicol. Appl. Pharmacol.
, vol.262
, pp. 1-10
-
-
Reynolds, J.G.1
-
97
-
-
79952486189
-
A phase I pharmacokinetic (PK) study of MBP-426, a novel liposome encapsulated oxaliplatin
-
Sankhala K., et al. A phase I pharmacokinetic (PK) study of MBP-426, a novel liposome encapsulated oxaliplatin. J. Clin. Oncol. 2009, 27(Suppl.):15S.
-
(2009)
J. Clin. Oncol.
, vol.27
, Issue.SUPPL.
-
-
Sankhala, K.1
-
98
-
-
84876554446
-
Design principles for clinical efficacy of cancer nanomedicine: a look into the basics
-
Sengupta S., Kulkarni A. Design principles for clinical efficacy of cancer nanomedicine: a look into the basics. ACS Nano 2013, 7:2878-2882.
-
(2013)
ACS Nano
, vol.7
, pp. 2878-2882
-
-
Sengupta, S.1
Kulkarni, A.2
-
99
-
-
80054098573
-
Antibody conjugate therapeutics: challenges and potential
-
Teicher B.A., Chari R.V.J. Antibody conjugate therapeutics: challenges and potential. Clin. Cancer Res. 2011, 17:6389-6397.
-
(2011)
Clin. Cancer Res.
, vol.17
, pp. 6389-6397
-
-
Teicher, B.A.1
Chari, R.V.J.2
-
100
-
-
77649185057
-
Targeted delivery of RGD-modified liposomes encapsulating both combretastatin A-4 and doxorubicin for tumor therapy: in vitro and in vivo studies
-
Zhang Y., et al. Targeted delivery of RGD-modified liposomes encapsulating both combretastatin A-4 and doxorubicin for tumor therapy: in vitro and in vivo studies. Eur. J. Pharm. Biopharm. 2010, 74:467-473.
-
(2010)
Eur. J. Pharm. Biopharm.
, vol.74
, pp. 467-473
-
-
Zhang, Y.1
-
101
-
-
0141990623
-
Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin
-
Schiffelers R.M., et al. Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J. Control. Release 2003, 91:115-122.
-
(2003)
J. Control. Release
, vol.91
, pp. 115-122
-
-
Schiffelers, R.M.1
-
102
-
-
65849245222
-
RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer
-
Zhao H., et al. RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer. J. Drug Target. 2009, 17:10-18.
-
(2009)
J. Drug Target.
, vol.17
, pp. 10-18
-
-
Zhao, H.1
-
103
-
-
4644302286
-
Novel RGD lipopeptides for the targeting of liposomes to integrin-expressing endothelial and melanoma cells
-
Hölig P., et al. Novel RGD lipopeptides for the targeting of liposomes to integrin-expressing endothelial and melanoma cells. Protein Eng. Des. Sel. 2004, 17:433-441.
-
(2004)
Protein Eng. Des. Sel.
, vol.17
, pp. 433-441
-
-
Hölig, P.1
-
104
-
-
80053633448
-
RGD-targeted paramagnetic liposomes for early detection of tumor: in vitro and in vivo studies
-
Li W., et al. RGD-targeted paramagnetic liposomes for early detection of tumor: in vitro and in vivo studies. Eur. J. Radiol. 2011, 80:598-606.
-
(2011)
Eur. J. Radiol.
, vol.80
, pp. 598-606
-
-
Li, W.1
-
105
-
-
84870356290
-
Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma
-
Zhou X., et al. Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma. Int. J. Nanomed. 2012, 7:5465-5474.
-
(2012)
Int. J. Nanomed.
, vol.7
, pp. 5465-5474
-
-
Zhou, X.1
-
106
-
-
34147130831
-
Modulation of cancer cell survival pathways using multivalent liposomal therapeutic antibody constructs
-
Chiu G.N.C., et al. Modulation of cancer cell survival pathways using multivalent liposomal therapeutic antibody constructs. Mol. Cancer Ther. 2007, 6:844-855.
-
(2007)
Mol. Cancer Ther.
, vol.6
, pp. 844-855
-
-
Chiu, G.N.C.1
-
107
-
-
84872093800
-
Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocytic leukemia
-
Yu B., et al. Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocytic leukemia. Blood 2013, 121:136-147.
-
(2013)
Blood
, vol.121
, pp. 136-147
-
-
Yu, B.1
-
108
-
-
77951890850
-
Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models
-
Gabizon A., et al. Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer Chemother. Pharmacol. 2010, 66:43-52.
-
(2010)
Cancer Chemother. Pharmacol.
, vol.66
, pp. 43-52
-
-
Gabizon, A.1
-
109
-
-
84863081080
-
Investigation of glucose-modified liposomes using polyethylene glycols with different chain lengths as the linkers for brain targeting
-
Xie F., et al. Investigation of glucose-modified liposomes using polyethylene glycols with different chain lengths as the linkers for brain targeting. Int. J. Nanomed. 2012, 7:163-175.
-
(2012)
Int. J. Nanomed.
, vol.7
, pp. 163-175
-
-
Xie, F.1
-
110
-
-
84866764636
-
Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: a potential theranostic agent
-
Accardo A., et al. Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: a potential theranostic agent. Int. J. Nanomed. 2012, 7:2007-2017.
-
(2012)
Int. J. Nanomed.
, vol.7
, pp. 2007-2017
-
-
Accardo, A.1
-
111
-
-
35848961893
-
Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells
-
Yang T., et al. Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells. Pharm. Res. 2007, 24:2402-2411.
-
(2007)
Pharm. Res.
, vol.24
, pp. 2402-2411
-
-
Yang, T.1
-
112
-
-
49149123113
-
Bioavailability and therapeutic efficacy of HER2 scFv-targeted liposomal doxorubicin in a murine model of HER2-overexpressing breast cancer
-
Laginha K.M., et al. Bioavailability and therapeutic efficacy of HER2 scFv-targeted liposomal doxorubicin in a murine model of HER2-overexpressing breast cancer. J. Drug Target. 2008, 16:605-610.
-
(2008)
J. Drug Target.
, vol.16
, pp. 605-610
-
-
Laginha, K.M.1
-
113
-
-
2442545323
-
Enhanced in vitro DNA transfection efficiency by novel folate-linked nanoparticles in human prostate cancer and oral cancer
-
Hattori Y., Maitani Y. Enhanced in vitro DNA transfection efficiency by novel folate-linked nanoparticles in human prostate cancer and oral cancer. J. Control. Release 2004, 97:173-183.
-
(2004)
J. Control. Release
, vol.97
, pp. 173-183
-
-
Hattori, Y.1
Maitani, Y.2
-
114
-
-
49149126768
-
Prostate cancer-specific monoclonal antibody 5D4 significantly enhances the cytotoxicity of doxorubicin-loaded liposomes against target cells in vitro
-
Sawant R.M., et al. Prostate cancer-specific monoclonal antibody 5D4 significantly enhances the cytotoxicity of doxorubicin-loaded liposomes against target cells in vitro. J. Drug Target. 2008, 16:601-604.
-
(2008)
J. Drug Target.
, vol.16
, pp. 601-604
-
-
Sawant, R.M.1
-
115
-
-
77955264087
-
A novel octreotide modified lipid vesicle improved the anticancer efficacy of doxorubicin in somatostatin receptor 2 positive tumor models
-
Zhang J., et al. A novel octreotide modified lipid vesicle improved the anticancer efficacy of doxorubicin in somatostatin receptor 2 positive tumor models. Mol. Pharm. 2010, 107:1159-1168.
-
(2010)
Mol. Pharm.
, vol.107
, pp. 1159-1168
-
-
Zhang, J.1
-
116
-
-
79953821130
-
Octreotide-targeted liposomes loaded with CPT-11 enhanced cytotoxicity for the treatment of medullary thyroid carcinoma
-
Iwase Y., Maitani Y. Octreotide-targeted liposomes loaded with CPT-11 enhanced cytotoxicity for the treatment of medullary thyroid carcinoma. Mol. Pharm. 2011, 8:330-337.
-
(2011)
Mol. Pharm.
, vol.8
, pp. 330-337
-
-
Iwase, Y.1
Maitani, Y.2
-
117
-
-
84856384153
-
Increased apoptosis in cancer cells in vitro and in vivo by ceramides in transferrin-modified liposomes
-
Koshkaryev A., et al. Increased apoptosis in cancer cells in vitro and in vivo by ceramides in transferrin-modified liposomes. Cancer Biol. Ther. 2012, 13:50-60.
-
(2012)
Cancer Biol. Ther.
, vol.13
, pp. 50-60
-
-
Koshkaryev, A.1
-
118
-
-
77349118427
-
Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro
-
Krieger M.L., et al. Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro. Int. J. Pharm. 2010, 389:10-17.
-
(2010)
Int. J. Pharm.
, vol.389
, pp. 10-17
-
-
Krieger, M.L.1
-
119
-
-
74949127407
-
Transferrin receptor-targeted liposomes encapsulating anti-BCR-ABL siRNA or asODN for chronic myeloid leukemia treatment
-
Mendonça L.S., et al. Transferrin receptor-targeted liposomes encapsulating anti-BCR-ABL siRNA or asODN for chronic myeloid leukemia treatment. Bioconjug. Chem. 2010, 21:157-168.
-
(2010)
Bioconjug. Chem.
, vol.21
, pp. 157-168
-
-
Mendonça, L.S.1
-
120
-
-
67349233077
-
Targeted delivery of doxorubicin using stealth liposomes modified with transferrin
-
Li X., et al. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int. J. Pharm. 2009, 373:116-123.
-
(2009)
Int. J. Pharm.
, vol.373
, pp. 116-123
-
-
Li, X.1
-
121
-
-
36049008819
-
Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome
-
Suzuki R., et al. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int. J. Pharm. 2008, 346:143-150.
-
(2008)
Int. J. Pharm.
, vol.346
, pp. 143-150
-
-
Suzuki, R.1
-
122
-
-
34848911993
-
Reversal of multidrug resistance by liposomes co-encapsulating doxorubicin and verapamil
-
Wu J., et al. Reversal of multidrug resistance by liposomes co-encapsulating doxorubicin and verapamil. J. Pharm. Pharm. Sci. 2007, 10:350-357.
-
(2007)
J. Pharm. Pharm. Sci.
, vol.10
, pp. 350-357
-
-
Wu, J.1
-
123
-
-
33845595490
-
Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells
-
Kobayashi T., et al. Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int. J. Pharm. 2007, 329:94-102.
-
(2007)
Int. J. Pharm.
, vol.329
, pp. 94-102
-
-
Kobayashi, T.1
-
124
-
-
0038812123
-
Systemic tumor-targeted gene delivery by anti-transferrin receptor scfv-immunoliposomes
-
Xu L., et al. Systemic tumor-targeted gene delivery by anti-transferrin receptor scfv-immunoliposomes. Mol. Cancer Ther. 2002, 1:337-346.
-
(2002)
Mol. Cancer Ther.
, vol.1
, pp. 337-346
-
-
Xu, L.1
-
125
-
-
0036568415
-
Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer
-
Iinuma H., et al. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int. J. Cancer 2002, 99:130-137.
-
(2002)
Int. J. Cancer
, vol.99
, pp. 130-137
-
-
Iinuma, H.1
-
126
-
-
33646137581
-
Efficient delivery of a Bcl-2-specific antisense oligodeoxyribonucleotide (G3139) via transferrin receptor-targeted liposomes
-
Chiu S-J., et al. Efficient delivery of a Bcl-2-specific antisense oligodeoxyribonucleotide (G3139) via transferrin receptor-targeted liposomes. J. Control. Release 2006, 112:199-207.
-
(2006)
J. Control. Release
, vol.112
, pp. 199-207
-
-
Chiu, S.-J.1
-
127
-
-
67349159358
-
Transferrin receptor targeted lipopolyplexes for delivery of antisense oligonucleotide g3139 in a murine k562 xenograft model
-
Zhang X., et al. Transferrin receptor targeted lipopolyplexes for delivery of antisense oligonucleotide g3139 in a murine k562 xenograft model. Pharm. Res. 2009, 26:1516-1524.
-
(2009)
Pharm. Res.
, vol.26
, pp. 1516-1524
-
-
Zhang, X.1
|