메뉴 건너뛰기




Volumn 174, Issue 1-2, 2004, Pages 161-173

Optimization of Artificial Neural Network (ANN) model design for prediction of macroinvertebrates in the Zwalm river basin (Flanders, Belgium)

Author keywords

Habitat preferences; Macroinvertebrates; Optimization; Predictive modeling

Indexed keywords

ARTIFICIAL NEURAL NETWORK; ECOSYSTEM MODELING; HABITAT AVAILABILITY; MACROINVERTEBRATE; OPTIMIZATION;

EID: 1842767238     PISSN: 03043800     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecolmodel.2004.01.003     Document Type: Article
Times cited : (92)

References (46)
  • 1
    • 0033578382 scopus 로고    scopus 로고
    • The use of artificial neural networks to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake
    • Brosse S., Guégan J.F., Tourenq J.N., Lek S. The use of artificial neural networks to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake. Ecol. Model. 120(2/3):1999;299-311.
    • (1999) Ecol. Model. , vol.120 , Issue.2-3 , pp. 299-311
    • Brosse, S.1    Guégan, J.F.2    Tourenq, J.N.3    Lek, S.4
  • 2
    • 0005778164 scopus 로고    scopus 로고
    • Study by order of the Flemish Environment Agency (VMM), Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent, Belgium, (in Dutch).
    • Carchon, P., De Pauw, N., 1997. Development of a methodology for the assessment of surface waters. Study by order of the Flemish Environment Agency (VMM), Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent, Belgium, 55 pp. (in Dutch).
    • (1997) Development of a Methodology for the Assessment of Surface Waters
    • Carchon, P.1    De Pauw, N.2
  • 3
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • Cohen J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1):1960;37-46.
    • (1960) Educ. Psychol. Meas. , vol.20 , Issue.1 , pp. 37-46
    • Cohen, J.1
  • 4
    • 0013400198 scopus 로고    scopus 로고
    • Comparison of artificial neural network (ANN) model development methods for prediction of macroinvertebrate communities in the Zwalm river basin in Flanders, Belgium
    • Dedecker A.P., Goethals P.L.M., De Pauw N. Comparison of artificial neural network (ANN) model development methods for prediction of macroinvertebrate communities in the Zwalm river basin in Flanders, Belgium. TheScientificWorldJOURNAL. 2:2002a;96-104.
    • (2002) TheScientificWorldJOURNAL , vol.2 , pp. 96-104
    • Dedecker, A.P.1    Goethals, P.L.M.2    De Pauw, N.3
  • 6
    • 0028164955 scopus 로고
    • Performance of two artificial substrate samplers for macroinvertebrates in biological monitoring of large and deep rivers and canals in Belgium and the Netherlands
    • De Pauw N., Lambert V., Van Kenhove A., Bij De Vaate A. Performance of two artificial substrate samplers for macroinvertebrates in biological monitoring of large and deep rivers and canals in Belgium and The Netherlands. Environ. Monit. Assess. 30:1994;25-47.
    • (1994) Environ. Monit. Assess. , vol.30 , pp. 25-47
    • De Pauw, N.1    Lambert, V.2    Van Kenhove, A.3    Bij De Vaate, A.4
  • 7
    • 0020874018 scopus 로고
    • Method for biological assessment of watercourses in Belgium
    • De Pauw N., Vanhooren G. Method for biological assessment of watercourses in Belgium. Hydrobiologia. 100:1983;153-168.
    • (1983) Hydrobiologia , vol.100 , pp. 153-168
    • De Pauw, N.1    Vanhooren, G.2
  • 9
    • 1842673012 scopus 로고    scopus 로고
    • Genetic algorithms for optimisation of predictive ecosystems models based on decision trees and neural networks
    • in press.
    • D'heygere, T., Goethals, P.L.M., De Pauw, N., 2004. Genetic algorithms for optimisation of predictive ecosystems models based on decision trees and neural networks. Ecol. Model. in press.
    • (2004) Ecol. Model.
    • D'heygere, T.1    Goethals, P.L.M.2    De Pauw, N.3
  • 10
    • 0030953391 scopus 로고    scopus 로고
    • A review of methods for the assessment of prediction errors in conservation presence/absence models
    • Fielding A.H., Bell J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24:1997;38-49.
    • (1997) Environ. Conserv. , vol.24 , pp. 38-49
    • Fielding, A.H.1    Bell, J.F.2
  • 11
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • Garson G.D. Interpreting neural-network connection weights. Artif. Intell. Expert. 6:1991;47-51.
    • (1991) Artif. Intell. Expert , vol.6 , pp. 47-51
    • Garson, G.D.1
  • 12
    • 0036073254 scopus 로고    scopus 로고
    • Development of a concept for integrated ecological river assessment in Flanders, Belgium
    • Goethals P.L.M., De Pauw N. Development of a concept for integrated ecological river assessment in Flanders, Belgium. J. Limnol. 60(1):2001;7-16.
    • (2001) J. Limnol. , vol.60 , Issue.1 , pp. 7-16
    • Goethals, P.L.M.1    De Pauw, N.2
  • 13
    • 0344052657 scopus 로고    scopus 로고
    • Energy availability and habitat heterogeneity predict global riverine fish diversity
    • Guégan J.F., Lek S., Oberdorff T. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature. 391:1998;382-384.
    • (1998) Nature , vol.391 , pp. 382-384
    • Guégan, J.F.1    Lek, S.2    Oberdorff, T.3
  • 15
    • 0035669958 scopus 로고    scopus 로고
    • Predictive modelling of macroinvertebrate assemblages for stream habitat assessments in Queensland (Australia)
    • Hoang H., Recknagel F., Marshall J., Choy S. Predictive modelling of macroinvertebrate assemblages for stream habitat assessments in Queensland (Australia). Ecol. Model. 195:2001;195-206.
    • (2001) Ecol. Model. , vol.195 , pp. 195-206
    • Hoang, H.1    Recknagel, F.2    Marshall, J.3    Choy, S.4
  • 16
    • 0034735692 scopus 로고    scopus 로고
    • Case studies on the use of neural networks in eutrophication modeling
    • Karul C., Soyupak S., Cilesiz A.F., Akbay N., Germen E. Case studies on the use of neural networks in eutrophication modeling. Ecol. Model. 134:2000;145-152.
    • (2000) Ecol. Model. , vol.134 , pp. 145-152
    • Karul, C.1    Soyupak, S.2    Cilesiz, A.F.3    Akbay, N.4    Germen, E.5
  • 17
    • 0033578393 scopus 로고    scopus 로고
    • Predicting fish yield of African lakes using neural networks
    • Laë R., Lek S., Moreau J. Predicting fish yield of African lakes using neural networks. Ecol. Model. 120:1999;325-335.
    • (1999) Ecol. Model. , vol.120 , pp. 325-335
    • Laë, R.1    Lek, S.2    Moreau, J.3
  • 20
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modelling, an introduction
    • Lek S., Guégan J.F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model. 120:1999;65-73.
    • (1999) Ecol. Model. , vol.120 , pp. 65-73
    • Lek, S.1    Guégan, J.F.2
  • 21
    • 0031096422 scopus 로고    scopus 로고
    • Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks
    • Maier H.R., Dandy G.C. Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks. Math. Comput. Simul. 43(3-6):1997;377-386.
    • (1997) Math. Comput. Simul. , vol.43 , Issue.36 , pp. 377-386
    • Maier, H.R.1    Dandy, G.C.2
  • 22
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Software. 15:2000;101-124.
    • (2000) Environ. Model. Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 23
    • 0035108726 scopus 로고    scopus 로고
    • Neural network based modelling of environmental variables: A systematic approach
    • Maier H.R., Dandy G.C. Neural network based modelling of environmental variables: a systematic approach. Math. Comput. Model. 33:2001;669-682.
    • (2001) Math. Comput. Model. , vol.33 , pp. 669-682
    • Maier, H.R.1    Dandy, G.C.2
  • 24
    • 0031933254 scopus 로고    scopus 로고
    • Use of artificial neural networks for modelling cyanobacterial Anabaena spp. in the River Murray, South Australia
    • Maier H.R., Dandy G.C., Burch M.D. Use of artificial neural networks for modelling cyanobacterial Anabaena spp. in the River Murray, South Australia. Ecol. Model. 105(2/3):1998;257-272.
    • (1998) Ecol. Model. , vol.105 , Issue.2-3 , pp. 257-272
    • Maier, H.R.1    Dandy, G.C.2    Burch, M.D.3
  • 25
    • 0032694546 scopus 로고    scopus 로고
    • Alternative methods for predicting species distribution: An illustration with Himalayan river birds
    • Manel S., Dias J.M., Buckton S.T., Ormerod S.J. Alternative methods for predicting species distribution: an illustration with Himalayan river birds. J. Appl. Ecol. 36:1999;734-747.
    • (1999) J. Appl. Ecol. , vol.36 , pp. 734-747
    • Manel, S.1    Dias, J.M.2    Buckton, S.T.3    Ormerod, S.J.4
  • 26
    • 0034770214 scopus 로고    scopus 로고
    • Evaluating presence-absence models in ecology: The need to account for prevalence
    • Manel S., Wililiams H.C., Ormerod S.J. Evaluating presence-absence models in ecology: the need to account for prevalence. J. Appl. Ecol. 38:2001;921-931.
    • (2001) J. Appl. Ecol. , vol.38 , pp. 921-931
    • Manel, S.1    Wililiams, H.C.2    Ormerod, S.J.3
  • 27
    • 0032077579 scopus 로고    scopus 로고
    • Predicting local fish species richness in the Garonne river basin
    • Mastrorillo S., Dauba F., Oberdorff T., Guégan J.F., Lek S. Predicting local fish species richness in the Garonne river basin. Ecology. 321:1998;423-428.
    • (1998) Ecology , vol.321 , pp. 423-428
    • Mastrorillo, S.1    Dauba, F.2    Oberdorff, T.3    Guégan, J.F.4    Lek, S.5
  • 28
    • 0030715033 scopus 로고    scopus 로고
    • The use of artificial neural networks to predict the presence of small-bodied fish in a river
    • Mastrorillo S., Lek S., Dauba F., Belaud A. The use of artificial neural networks to predict the presence of small-bodied fish in a river. Freshwater Biol. 38:1997;237-246.
    • (1997) Freshwater Biol. , vol.38 , pp. 237-246
    • Mastrorillo, S.1    Lek, S.2    Dauba, F.3    Belaud, A.4
  • 30
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the "black box": A randomization approach for understanding variable contributions in artificial neural networks
    • Olden J.D., Jackson D.A. Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 154:2002;135-150.
    • (2002) Ecol. Model. , vol.154 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 31
    • 0033105068 scopus 로고    scopus 로고
    • An artificial neural network approach to spatial habitat modeling with interspecific interaction
    • Özesmi S.L., Özesmi U. An artificial neural network approach to spatial habitat modeling with interspecific interaction. Ecol. Model. 116:1999;15-31.
    • (1999) Ecol. Model. , vol.116 , pp. 15-31
    • Özesmi, S.L.1    Özesmi, U.2
  • 32
    • 0035676416 scopus 로고    scopus 로고
    • Implementation of artificial neural networks in patterning and prediction of exergy in response to temporal dynamics of benthic macroinvertebrate communities in streams
    • Park Y.S., Kwak I.S., Chon T.S., Kim J.K., Jorgensen S.E. Implementation of artificial neural networks in patterning and prediction of exergy in response to temporal dynamics of benthic macroinvertebrate communities in streams. Ecol. Model. 146:2001;143-157.
    • (2001) Ecol. Model. , vol.146 , pp. 143-157
    • Park, Y.S.1    Kwak, I.S.2    Chon, T.S.3    Kim, J.K.4    Jorgensen, S.E.5
  • 33
    • 0030809170 scopus 로고    scopus 로고
    • ANNA - Artificial neural network model for predicting species abundance and succession of blue-green algae
    • Recknagel F. ANNA - artificial neural network model for predicting species abundance and succession of blue-green algae. Hydrobiologia. 349:1997;47-57.
    • (1997) Hydrobiologia , vol.349 , pp. 47-57
    • Recknagel, F.1
  • 34
    • 0030619529 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling and prediction of algal blooms
    • Recknagel F., French M., Harkonen P., Yabunaka K.I. Artificial neural network approach for modelling and prediction of algal blooms. Ecol. Model. 96(1-3):1997;11-28.
    • (1997) Ecol. Model. , vol.96 , Issue.13 , pp. 11-28
    • Recknagel, F.1    French, M.2    Harkonen, P.3    Yabunaka, K.I.4
  • 35
    • 0035676249 scopus 로고    scopus 로고
    • Applications of machine learning to ecological modeling
    • Recknagel F. Applications of machine learning to ecological modeling. Ecol. Model. 146:2001;303-310.
    • (2001) Ecol. Model. , vol.146 , pp. 303-310
    • Recknagel, F.1
  • 36
    • 0035679359 scopus 로고    scopus 로고
    • Modelling of microhabitat used by fish in natural and regulated flows in the river Garonne (France)
    • Reyjol Y., Lim P., Belaud A., Lek S. Modelling of microhabitat used by fish in natural and regulated flows in the river Garonne (France). Ecol. Model. 146:2001;131-142.
    • (2001) Ecol. Model. , vol.146 , pp. 131-142
    • Reyjol, Y.1    Lim, P.2    Belaud, A.3    Lek, S.4
  • 37
    • 0022471098 scopus 로고
    • Learning representations by back-propagation errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagation errors. Nature. 323:1986;533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 38
    • 0035673819 scopus 로고    scopus 로고
    • Advances in neural network modeling of phytoplankton primary production
    • Scardi M. Advances in neural network modeling of phytoplankton primary production. Ecol. Model. 146:2001;33-45.
    • (2001) Ecol. Model. , vol.146 , pp. 33-45
    • Scardi, M.1
  • 39
    • 0033578446 scopus 로고    scopus 로고
    • Developing an empirical model of phytoplankton primary production: A neural network case study
    • Scardi M., Harding L.W. Developing an empirical model of phytoplankton primary production: a neural network case study. Ecol. Model. 120(2/3):1999;213-223.
    • (1999) Ecol. Model. , vol.120 , Issue.2-3 , pp. 213-223
    • Scardi, M.1    Harding, L.W.2
  • 40
    • 0033578421 scopus 로고    scopus 로고
    • Modelling water quality, bioindication and population dynamics in lotic ecosystems using neural networks
    • Schleiter I.M., Borchardt D., Wagner R., Dapper T., Schmidt K.D., Schmidt H.H., Werner H. Modelling water quality, bioindication and population dynamics in lotic ecosystems using neural networks. Ecol. Model. 120(2/3):1999;271-286.
    • (1999) Ecol. Model. , vol.120 , Issue.2-3 , pp. 271-286
    • Schleiter, I.M.1    Borchardt, D.2    Wagner, R.3    Dapper, T.4    Schmidt, K.D.5    Schmidt, H.H.6    Werner, H.7
  • 43
    • 0034174310 scopus 로고    scopus 로고
    • The influence of environmental variables on the abundance of aquatic insects: A comparison of ordination and artificial neural networks
    • Wagner R., Dapper T., Schmidt H.H. The influence of environmental variables on the abundance of aquatic insects: a comparison of ordination and artificial neural networks. Hydrobiologia. 422/423:2000;143-152.
    • (2000) Hydrobiologia , vol.422-423 , pp. 143-152
    • Wagner, R.1    Dapper, T.2    Schmidt, H.H.3
  • 44
    • 0035057610 scopus 로고    scopus 로고
    • Use of artificial neural network in the prediction of algal blooms
    • Wei B., Sugiura N., Maekawa T. Use of artificial neural network in the prediction of algal blooms. Water Res. 35(8):2001;2022-2028.
    • (2001) Water Res. , vol.35 , Issue.8 , pp. 2022-2028
    • Wei, B.1    Sugiura, N.2    Maekawa, T.3
  • 45
    • 0035672573 scopus 로고    scopus 로고
    • Towards a generic artifical neural network model for dynamic predictions of algal abundance in freshwater lakes
    • Wilson H., Recknagel F. Towards a generic artifical neural network model for dynamic predictions of algal abundance in freshwater lakes. Ecol. Model. 146:2001;69-84.
    • (2001) Ecol. Model. , vol.146 , pp. 69-84
    • Wilson, H.1    Recknagel, F.2
  • 46
    • 1842723248 scopus 로고    scopus 로고
    • Morgan Kaufmann Publishers, San Francisco
    • Witten, I.H., Frank, E., 2000. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann Publishers, San Francisco, 369 pp.
    • (2000)
    • Witten, I.H.1    Frank, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.