메뉴 건너뛰기




Volumn 5, Issue 1, 2014, Pages 31-48

Ribonuclease III mechanisms of double-stranded RNA cleavage

Author keywords

[No Author keywords available]

Indexed keywords

DICER; DOUBLE STRANDED RNA; FUNGAL ENZYME; KREN1 PROTEIN; KREN2 PROTEIN; KREN3 PROTEIN; KREPB4 PROTEIN; KREPB5 PROTEIN; POLYPEPTIDE; PROTEIN; RIBONUCLEASE III; SMALL NUCLEOLAR RNA; UNCLASSIFIED DRUG; UNTRANSLATED RNA;

EID: 84890287379     PISSN: 17577004     EISSN: 17577012     Source Type: Journal    
DOI: 10.1002/wrna.1195     Document Type: Review
Times cited : (151)

References (118)
  • 2
    • 0029681842 scopus 로고    scopus 로고
    • Structure, reactivity and biology of double-stranded RNA
    • Nicholson AW. Structure, reactivity and biology of double-stranded RNA. Prog Nucleic Acid Res Mol Biol 1996, 52:1-65.
    • (1996) Prog Nucleic Acid Res Mol Biol , vol.52 , pp. 1-65
    • Nicholson, A.W.1
  • 3
    • 4544305449 scopus 로고    scopus 로고
    • Effects of length and location on the cellular response to double-stranded RNA
    • Wang Q, Carmichael GG. Effects of length and location on the cellular response to double-stranded RNA. Microbiol Mol Biol Rev 2004, 68:432-452.
    • (2004) Microbiol Mol Biol Rev , vol.68 , pp. 432-452
    • Wang, Q.1    Carmichael, G.G.2
  • 4
    • 34548129595 scopus 로고    scopus 로고
    • The response of mammalian cells to double-stranded RNA
    • Gantier MP, Williams BR. The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev 2007, 18:363-371.
    • (2007) Cytokine Growth Factor Rev , vol.18 , pp. 363-371
    • Gantier, M.P.1    Williams, B.R.2
  • 5
    • 84877869484 scopus 로고    scopus 로고
    • dsRNA sensing during viral infection: lessons from plants, worms, insects, and mammals
    • deFaria IJ, Olmo RP, Silva EG, Marques JT. dsRNA sensing during viral infection: lessons from plants, worms, insects, and mammals. J. Interferon Cytokine Res 2013, 33:239-253.
    • (2013) J. Interferon Cytokine Res , vol.33 , pp. 239-253
    • deFaria, I.J.1    Olmo, R.P.2    Silva, E.G.3    Marques, J.T.4
  • 6
    • 34250257369 scopus 로고
    • RNA processing and degradation by RNase III
    • Belasco J, Brawerman G, eds. New York: Academic Press, Inc;
    • Court D. RNA processing and degradation by RNase III. Belasco J, Brawerman G, eds. Control of Messenger RNA Stability. New York: Academic Press, Inc; 1993, 71-116.
    • (1993) Control of Messenger RNA Stability , pp. 71-116
    • Court, D.1
  • 7
    • 84889676816 scopus 로고    scopus 로고
    • Ribonuclease III and the role of double-stranded RNA processing in bacterial systems
    • Nicholson AW, ed. Berlin-Heidelberg: Springer-Verlag;, doi: 10.1007/978-3-642-21078-5_11.
    • Nicholson AW. Ribonuclease III and the role of double-stranded RNA processing in bacterial systems. Nicholson AW, ed. Ribonucleases. Nucleic Acids and Molecular Biology 26. Berlin-Heidelberg: Springer-Verlag; 2011, 269-297. doi: 10.1007/978-3-642-21078-5_11.
    • (2011) Ribonucleases. Nucleic Acids and Molecular Biology 26 , pp. 269-297
    • Nicholson, A.W.1
  • 8
    • 0035155389 scopus 로고    scopus 로고
    • The RNase III family: a conserved structure and expanding functions in eukaryotic dsRNA metabolism
    • Lamontagne B, LaRose S, Boulanger J, Elela SA. The RNase III family: a conserved structure and expanding functions in eukaryotic dsRNA metabolism. Curr Issues Mol Biol 2001, 3:71-78.
    • (2001) Curr Issues Mol Biol , vol.3 , pp. 71-78
    • Lamontagne, B.1    LaRose, S.2    Boulanger, J.3    Elela, S.A.4
  • 9
    • 0347224335 scopus 로고    scopus 로고
    • The ribonuclease III superfamily: forms and functions in RNA maturation, decay, and gene silencing
    • Hannon GJ, ed. Cold Spring Harbor, NY: Cold Spring Harbor Press;
    • Nicholson AW. The ribonuclease III superfamily: forms and functions in RNA maturation, decay, and gene silencing. Hannon GJ, ed. RNAi: A Guide to Gene Silencing. Cold Spring Harbor, NY: Cold Spring Harbor Press; 2003, 149-174.
    • (2003) RNAi: A Guide to Gene Silencing , pp. 149-174
    • Nicholson, A.W.1
  • 10
    • 33846927800 scopus 로고    scopus 로고
    • Ribonuclease revisited: structural insights into ribonuclease III family enzymes
    • MacRae IJ, Doudna JA. Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 2007, 17:1380145.
    • (2007) Curr Opin Struct Biol , vol.17 , pp. 1380145
    • MacRae, I.J.1    Doudna, J.A.2
  • 13
    • 77953293106 scopus 로고    scopus 로고
    • A'-form RNA helices are required for cytoplasmic mRNA transport in Drosophila
    • doi: 10.1038/nsmb.1813.
    • Bullock SL, Ringel I, Ish-Horowicz D, Lukavsky PJ. A'-form RNA helices are required for cytoplasmic mRNA transport in Drosophila. Nat Struct Mol Biol 2010, 17:703-710. doi: 10.1038/nsmb.1813.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 703-710
    • Bullock, S.L.1    Ringel, I.2    Ish-Horowicz, D.3    Lukavsky, P.J.4
  • 14
    • 0034655642 scopus 로고    scopus 로고
    • Hexahydrated magnesium ions bind in the deep major groove and at the outer mouth of A-form nucleic acid duplexes
    • Robinson H, Gao Y-G, Sanishvili R, Joachimiak A, Wang AH-J. Hexahydrated magnesium ions bind in the deep major groove and at the outer mouth of A-form nucleic acid duplexes. Nucleic Acids Res 2000, 28:1760-1766.
    • (2000) Nucleic Acids Res , vol.28 , pp. 1760-1766
    • Robinson, H.1    Gao, Y.-G.2    Sanishvili, R.3    Joachimiak, A.4    Wang, A.-J.5
  • 15
    • 67651163671 scopus 로고    scopus 로고
    • Both helix topology and counterion distribution contribute to the more effective charge screening in dsRNA compared with dsDNA
    • doi: 10.1093/nar/gkp257.
    • Pabit SA, Qiu X, Lamb JA, Li L, Meisburger SP, Pollack L. Both helix topology and counterion distribution contribute to the more effective charge screening in dsRNA compared with dsDNA. Nucleic Acids Res 2009, 37:3887-3896. doi: 10.1093/nar/gkp257.
    • (2009) Nucleic Acids Res , vol.37 , pp. 3887-3896
    • Pabit, S.A.1    Qiu, X.2    Lamb, J.A.3    Li, L.4    Meisburger, S.P.5    Pollack, L.6
  • 16
    • 79952504671 scopus 로고    scopus 로고
    • Double-stranded RNA resists condensation
    • doi: 10.1103/PhysRevLett.106.108101.
    • Li L, Pabit SA, Meisburger SP, Pollack L. Double-stranded RNA resists condensation. Phys Rev Lett 2011, 106:108101. doi: 10.1103/PhysRevLett.106.108101.
    • (2011) Phys Rev Lett , vol.106 , pp. 108101
    • Li, L.1    Pabit, S.A.2    Meisburger, S.P.3    Pollack, L.4
  • 17
    • 22144455993 scopus 로고    scopus 로고
    • Single-molecule measurements of the persistence length of double-stranded RNA
    • doi: 10.1529/biophysj.104.052811.
    • Abels JA, Moreno-Herrero F, van der Heijden T, Dekker C, Dekker NH. Single-molecule measurements of the persistence length of double-stranded RNA. Biophys J 2005, 88:2737-2744. doi: 10.1529/biophysj.104.052811.
    • (2005) Biophys J , vol.88 , pp. 2737-2744
    • Abels, J.A.1    Moreno-Herrero, F.2    van der Heijden, T.3    Dekker, C.4    Dekker, N.H.5
  • 18
    • 77957350921 scopus 로고    scopus 로고
    • Toward a consensus view of duplex RNA flexibility
    • doi: 10.1016/j.bpj.2010.06.061.
    • Faustino I, Pérez A, Orozco M. Toward a consensus view of duplex RNA flexibility. Biophys J 2010, 99:1876-1885. doi: 10.1016/j.bpj.2010.06.061.
    • (2010) Biophys J , vol.99 , pp. 1876-1885
    • Faustino, I.1    Pérez, A.2    Orozco, M.3
  • 19
    • 0025880241 scopus 로고
    • Phased adenine tracts in double-stranded RNA do not induce sequence-directed bending
    • Wang Y-H, Howard MT, Griffith JD. Phased adenine tracts in double-stranded RNA do not induce sequence-directed bending. Biochemistry 1991, 30:5443-5449.
    • (1991) Biochemistry , vol.30 , pp. 5443-5449
    • Wang, Y.-H.1    Howard, M.T.2    Griffith, J.D.3
  • 20
    • 0025906148 scopus 로고
    • Electrophoretic and hydrodynamic properties of duplex ribonucleic acid molecules transcribed in vitro: evidence that A-tracts do not generate curvature in RNA
    • Gast F-U, Hagerman PJ. Electrophoretic and hydrodynamic properties of duplex ribonucleic acid molecules transcribed in vitro: evidence that A-tracts do not generate curvature in RNA. Biochemistry 1991, 30:4268-4277.
    • (1991) Biochemistry , vol.30 , pp. 4268-4277
    • Gast, F.-U.1    Hagerman, P.J.2
  • 21
    • 0029913806 scopus 로고    scopus 로고
    • The influence of symmetric internal loops on the flexibility of RNA
    • Zacharias M, Hagerman PJ. The influence of symmetric internal loops on the flexibility of RNA. J Mol Biol 1996, 257:276-289.
    • (1996) J Mol Biol , vol.257 , pp. 276-289
    • Zacharias, M.1    Hagerman, P.J.2
  • 22
    • 0028969693 scopus 로고
    • Bulge-induced bends in RNA: quantification by transient electric birefringence
    • Zacharias M, Hagerman PJ. Bulge-induced bends in RNA: quantification by transient electric birefringence. J Mol Biol 1995, 247:486-500.
    • (1995) J Mol Biol , vol.247 , pp. 486-500
    • Zacharias, M.1    Hagerman, P.J.2
  • 23
    • 40649115979 scopus 로고    scopus 로고
    • The mechanism of RNase III action: how dicer dices
    • Ji X. The mechanism of RNase III action: how dicer dices. Curr Top Microbiol Immunol 2008, 320:99-116.
    • (2008) Curr Top Microbiol Immunol , vol.320 , pp. 99-116
    • Ji, X.1
  • 24
    • 84878270899 scopus 로고    scopus 로고
    • RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence
    • doi: 10.1007/s00018-012-1119-x.
    • Masliah G, Barraud P, Allain FHT. RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence. Cell Mol Life Sci 2013, 70:1875-1895. doi: 10.1007/s00018-012-1119-x.
    • (2013) Cell Mol Life Sci , vol.70 , pp. 1875-1895
    • Masliah, G.1    Barraud, P.2    Allain, F.H.T.3
  • 25
    • 43449118061 scopus 로고    scopus 로고
    • Mini-III, an unusual member of the RNase III family of enzymes, catalyses 23S ribosomal RNA maturation in B. subtilis
    • doi: 10.1111/j.1365-2958.2008.06207.x.
    • Redko Y, Bechhofer DH, Condon C. Mini-III, an unusual member of the RNase III family of enzymes, catalyses 23S ribosomal RNA maturation in B. subtilis. Mol Microbiol 2008, 68:1096-1106. doi: 10.1111/j.1365-2958.2008.06207.x.
    • (2008) Mol Microbiol , vol.68 , pp. 1096-1106
    • Redko, Y.1    Bechhofer, D.H.2    Condon, C.3
  • 26
    • 0035846580 scopus 로고    scopus 로고
    • Intrinsic double-stranded-RNA processing activity of Escherichia coli ribonuclease III lacking the dsRNA-binding domain
    • Sun W, Jun E-J, Nicholson AW. Intrinsic double-stranded-RNA processing activity of Escherichia coli ribonuclease III lacking the dsRNA-binding domain. Biochemistry 2001, 40:14976-14984.
    • (2001) Biochemistry , vol.40 , pp. 14976-14984
    • Sun, W.1    Jun, E.-J.2    Nicholson, A.W.3
  • 27
    • 0017116036 scopus 로고
    • RNase III cleavage of single-stranded RNA. Effect of ionic strength on the fidelity of cleavage
    • Dunn JJ. RNase III cleavage of single-stranded RNA. Effect of ionic strength on the fidelity of cleavage. J Biol Chem 1976, 251:3807-3814.
    • (1976) J Biol Chem , vol.251 , pp. 3807-3814
    • Dunn, J.J.1
  • 28
    • 0035662491 scopus 로고    scopus 로고
    • Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage
    • Blaszczyk J, Tropea JE, Bubunenko M, Routzahn KM, Waugh DS, Court DL, Ji X. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure 2001, 9:1225-1236.
    • (2001) Structure , vol.9 , pp. 1225-1236
    • Blaszczyk, J.1    Tropea, J.E.2    Bubunenko, M.3    Routzahn, K.M.4    Waugh, D.S.5    Court, D.L.6    Ji, X.7
  • 29
    • 1542581581 scopus 로고    scopus 로고
    • Noncatalytic assembly of ribonuclease III with double-stranded RNA
    • doi: 10.1016/j.str.2004.02.004.
    • Blaszczyk J, Gan J, Tropea JE, Court DL, Waugh DS, Ji X. Noncatalytic assembly of ribonuclease III with double-stranded RNA. Structure 2004, 12:457-466. doi: 10.1016/j.str.2004.02.004.
    • (2004) Structure , vol.12 , pp. 457-466
    • Blaszczyk, J.1    Gan, J.2    Tropea, J.E.3    Court, D.L.4    Waugh, D.S.5    Ji, X.6
  • 30
    • 26444436343 scopus 로고    scopus 로고
    • Intermediate states of ribonuclease III in complex with double-stranded RNA
    • doi: 10.1016/j.str.2005.06.014.
    • Gan J, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X. Intermediate states of ribonuclease III in complex with double-stranded RNA. Structure 2005, 13:1435-1442. doi: 10.1016/j.str.2005.06.014.
    • (2005) Structure , vol.13 , pp. 1435-1442
    • Gan, J.1    Tropea, J.E.2    Austin, B.P.3    Court, D.L.4    Waugh, D.S.5    Ji, X.6
  • 31
    • 33746461896 scopus 로고    scopus 로고
    • Structural basis for non-catalytic and catalytic activities of ribonuclease III
    • doi: 10.1107/S090744490601153X.
    • Ji X. Structural basis for non-catalytic and catalytic activities of ribonuclease III. Acta Crystallogr D Biol Crystallogr 2006, D62:933-940. doi: 10.1107/S090744490601153X.
    • (2006) Acta Crystallogr D Biol Crystallogr , vol.62 , pp. 933-940
    • Ji, X.1
  • 32
    • 25844471038 scopus 로고    scopus 로고
    • Structure of the nuclease domain of ribonuclease III from M. tuberculosis at 2.1Å
    • doi: 10.1110/ps.051665905.
    • Akey DL, Berger JM. Structure of the nuclease domain of ribonuclease III from M. tuberculosis at 2.1Å. Protein Sci 2005, 14:2744-2750. doi: 10.1110/ps.051665905.
    • (2005) Protein Sci , vol.14 , pp. 2744-2750
    • Akey, D.L.1    Berger, J.M.2
  • 33
    • 31044448524 scopus 로고    scopus 로고
    • Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III
    • doi: 10.1016/j.cell.2005.11.034.
    • Gan J, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X. Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Cell 2006, 1245:355-366. doi: 10.1016/j.cell.2005.11.034.
    • (2006) Cell , vol.1245 , pp. 355-366
    • Gan, J.1    Tropea, J.E.2    Austin, B.P.3    Court, D.L.4    Waugh, D.S.5    Ji, X.6
  • 34
    • 0036294225 scopus 로고    scopus 로고
    • Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis
    • Campbell FE Jr, Cassano AG, Anderson VE, Harris ME. Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis. J Mol Biol 2002, 317:21-40.
    • (2002) J Mol Biol , vol.317 , pp. 21-40
    • Campbell Jr, F.E.1    Cassano, A.G.2    Anderson, V.E.3    Harris, M.E.4
  • 35
    • 0029976320 scopus 로고    scopus 로고
    • Defining the enzyme binding domain of a ribonuclease III processing signal. Ethylation interference and hydroxyl radical footprinting using catalytically inactive RNase III mutants
    • Li H, Nicholson AW. Defining the enzyme binding domain of a ribonuclease III processing signal. Ethylation interference and hydroxyl radical footprinting using catalytically inactive RNase III mutants. EMBO J 1996, 15:1421-1433.
    • (1996) EMBO J , vol.15 , pp. 1421-1433
    • Li, H.1    Nicholson, A.W.2
  • 36
    • 13844312491 scopus 로고    scopus 로고
    • Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis
    • Sun W, Pertzev A, Nicholson AW. Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis. Nucleic Acids Res 2005, 33:807-815.
    • (2005) Nucleic Acids Res , vol.33 , pp. 807-815
    • Sun, W.1    Pertzev, A.2    Nicholson, A.W.3
  • 37
    • 36849013062 scopus 로고    scopus 로고
    • A stepwise model for double-stranded RNA processing by ribonuclease III
    • doi: 10.1111/j.1365-2958.2007.06032.x.
    • Gan J, Shaw G, Tropea JE, Waugh DS, Court DL, Ji X. A stepwise model for double-stranded RNA processing by ribonuclease III. Mol Microbiol 2008, 67:143-154. doi: 10.1111/j.1365-2958.2007.06032.x.
    • (2008) Mol Microbiol , vol.67 , pp. 143-154
    • Gan, J.1    Shaw, G.2    Tropea, J.E.3    Waugh, D.S.4    Court, D.L.5    Ji, X.6
  • 38
    • 0038136893 scopus 로고    scopus 로고
    • Why do divalent metal ions either promote or inhibit enzymatic reactions?
    • doi: 10.1074/jbc.C200664200.
    • Mordasini T, Curioni A, Andreoni W. Why do divalent metal ions either promote or inhibit enzymatic reactions? J Biol Chem 2003, 278:4381-4384. doi: 10.1074/jbc.C200664200.
    • (2003) J Biol Chem , vol.278 , pp. 4381-4384
    • Mordasini, T.1    Curioni, A.2    Andreoni, W.3
  • 39
    • 39749139400 scopus 로고    scopus 로고
    • Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro
    • doi: 10.1042/BJ20071047.
    • Meng W, Nicholson AW. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro. Biochem J 2008, 410:39-48. doi: 10.1042/BJ20071047.
    • (2008) Biochem J , vol.410 , pp. 39-48
    • Meng, W.1    Nicholson, A.W.2
  • 40
    • 0037042215 scopus 로고    scopus 로고
    • One functional subunit is sufficient for catalytic activity and substrate specificity for Escherichia coli endoribonuclease III artificial heterodimers
    • Conrad C, Schmitt JG, Evguenieva-Hackenberg E, Klug G. One functional subunit is sufficient for catalytic activity and substrate specificity for Escherichia coli endoribonuclease III artificial heterodimers. FEBS Lett 2002, 518:93-96.
    • (2002) FEBS Lett , vol.518 , pp. 93-96
    • Conrad, C.1    Schmitt, J.G.2    Evguenieva-Hackenberg, E.3    Klug, G.4
  • 41
    • 0031470503 scopus 로고    scopus 로고
    • Regulation of ribonuclease III processing by double-helical sequence antideterminants
    • Zhang K, Nicholson AW. Regulation of ribonuclease III processing by double-helical sequence antideterminants. Proc Natl Acad Sci U S A 1997, 94:13437-13441.
    • (1997) Proc Natl Acad Sci U S A , vol.94 , pp. 13437-13441
    • Zhang, K.1    Nicholson, A.W.2
  • 42
    • 33747038694 scopus 로고    scopus 로고
    • Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III
    • Pertzev A, Nicholson AW. Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III. Nucleic Acids Res 2006, 34:3708-3721.
    • (2006) Nucleic Acids Res , vol.34 , pp. 3708-3721
    • Pertzev, A.1    Nicholson, A.W.2
  • 43
    • 79954586093 scopus 로고    scopus 로고
    • Characterization of Aquifex aeolicus ribonuclease III and the reactivity epitopes of its pre-ribosomal RNA substrates
    • Shi Z, Nicholson RH, Jaggi R, Nicholson AW. Characterization of Aquifex aeolicus ribonuclease III and the reactivity epitopes of its pre-ribosomal RNA substrates. Nucleic Acids Res 2011, 39:2756-2768.
    • (2011) Nucleic Acids Res , vol.39 , pp. 2756-2768
    • Shi, Z.1    Nicholson, R.H.2    Jaggi, R.3    Nicholson, A.W.4
  • 44
    • 0029671252 scopus 로고    scopus 로고
    • Antideterminants present in minihelix(Sec) hinder its recognition by prokaryotic elongation factor Tu
    • Rudinger J, Hillenbrandt R, Sprinzl M, Giegé R. Antideterminants present in minihelix(Sec) hinder its recognition by prokaryotic elongation factor Tu. EMBO J 1996, 15:650-657.
    • (1996) EMBO J , vol.15 , pp. 650-657
    • Rudinger, J.1    Hillenbrandt, R.2    Sprinzl, M.3    Giegé, R.4
  • 45
    • 0037736794 scopus 로고    scopus 로고
    • RNA structure-dependent uncoupling of substrate recognition and cleavage by Escherichia coli ribonuclease III
    • Calin-Jageman I, Nicholson AW. RNA structure-dependent uncoupling of substrate recognition and cleavage by Escherichia coli ribonuclease III. Nucleic Acids Res 2003, 31:2381-2392.
    • (2003) Nucleic Acids Res , vol.31 , pp. 2381-2392
    • Calin-Jageman, I.1    Nicholson, A.W.2
  • 46
    • 60649120832 scopus 로고    scopus 로고
    • Ribosomal protein L3 bound to 23S precursor rRNA stimulates its maturation by Min-III ribonuclease
    • doi: 10.1111/j.1365-2958.2008.06591.x.
    • Redko Y, Condon C. Ribosomal protein L3 bound to 23S precursor rRNA stimulates its maturation by Min-III ribonuclease. Mol Microbiol 2009, 71:1145-1154. doi: 10.1111/j.1365-2958.2008.06591.x.
    • (2009) Mol Microbiol , vol.71 , pp. 1145-1154
    • Redko, Y.1    Condon, C.2
  • 48
    • 84864052473 scopus 로고    scopus 로고
    • Global regulatory functions of the Staphylococcus aureus endoribonuclease III in gene expression
    • doi: 10.1371/journal.pgen.1002782.
    • Lioliou E, Sharma CM, Caldelari I, Helfer A-C, Fechter P, Vandenesch F, Vogel J, Romby P. Global regulatory functions of the Staphylococcus aureus endoribonuclease III in gene expression. PLoS Genet 2012, 8:e1002782. doi: 10.1371/journal.pgen.1002782.
    • (2012) PLoS Genet , vol.8
    • Lioliou, E.1    Sharma, C.M.2    Caldelari, I.3    Helfer, A.-C.4    Fechter, P.5    Vandenesch, F.6    Vogel, J.7    Romby, P.8
  • 49
    • 0022423266 scopus 로고
    • Cleavage within an RNase III site can control mRNA stability and protein synthesis in vivo
    • Panayotatos N, Truong K. Cleavage within an RNase III site can control mRNA stability and protein synthesis in vivo. Nucleic Acids Res 1985, 13:2227-2240.
    • (1985) Nucleic Acids Res , vol.13 , pp. 2227-2240
    • Panayotatos, N.1    Truong, K.2
  • 50
    • 0037995439 scopus 로고    scopus 로고
    • Mutational analysis of an RNA internal loop as a reactivity epitope for Escherichia coli ribonuclease III substrates
    • Calin-Jageman I, Nicholson AW. Mutational analysis of an RNA internal loop as a reactivity epitope for Escherichia coli ribonuclease III substrates. Biochemistry 2003, 42:5025-5034.
    • (2003) Biochemistry , vol.42 , pp. 5025-5034
    • Calin-Jageman, I.1    Nicholson, A.W.2
  • 51
    • 0029856238 scopus 로고    scopus 로고
    • RNase III autoregulation: structure and function of rncO, the posttranscriptional "operator"
    • Matsunaga J, Simons EL, Simons RW. RNase III autoregulation: structure and function of rncO, the posttranscriptional "operator". RNA 1996, 2:1228-1240.
    • (1996) RNA , vol.2 , pp. 1228-1240
    • Matsunaga, J.1    Simons, E.L.2    Simons, R.W.3
  • 52
    • 0021099474 scopus 로고
    • RNase III is positively regulated by T7 protein kinase
    • Mayer JE, Schweiger M. RNase III is positively regulated by T7 protein kinase. J Biol Chem 1983, 258:5340-5343.
    • (1983) J Biol Chem , vol.258 , pp. 5340-5343
    • Mayer, J.E.1    Schweiger, M.2
  • 53
    • 84865987855 scopus 로고    scopus 로고
    • Bacteriophage T7 protein kinase: site of inhibitory autophosphorylation, and use of dephosphorylated enzyme for efficient modification of protein in vitro
    • Gone S, Nicholson AW. Bacteriophage T7 protein kinase: site of inhibitory autophosphorylation, and use of dephosphorylated enzyme for efficient modification of protein in vitro. Protein Expr Purif 2012, 85:218-223.
    • (2012) Protein Expr Purif , vol.85 , pp. 218-223
    • Gone, S.1    Nicholson, A.W.2
  • 54
    • 0020964297 scopus 로고
    • Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements
    • Dunn JJ, Studier FW. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol 1983, 166:477-535.
    • (1983) J Mol Biol , vol.166 , pp. 477-535
    • Dunn, J.J.1    Studier, F.W.2
  • 55
    • 58049193963 scopus 로고    scopus 로고
    • YmdB: a stress-responsive ribonuclease-binding regulator of E. coli RNase III activity
    • doi: 10.1101/gad.1729508.
    • Kim K, Manasherob R, Cohen SN. YmdB: a stress-responsive ribonuclease-binding regulator of E. coli RNase III activity. Genes Dev 2008, 22:3497-3508. doi: 10.1101/gad.1729508.
    • (2008) Genes Dev , vol.22 , pp. 3497-3508
    • Kim, K.1    Manasherob, R.2    Cohen, S.N.3
  • 57
    • 84856800818 scopus 로고    scopus 로고
    • RNase III initiates rapid degradation of proU mRNA upon hypo-osmotic stress in Escherichia coli
    • doi: 10.4161/rna.9.1.18228.
    • Kavalchuk K, Srinivasan M, Schnetz K. RNase III initiates rapid degradation of proU mRNA upon hypo-osmotic stress in Escherichia coli. RNA Biol 2012, 9:1-12. doi: 10.4161/rna.9.1.18228.
    • (2012) RNA Biol , vol.9 , pp. 1-12
    • Kavalchuk, K.1    Srinivasan, M.2    Schnetz, K.3
  • 58
    • 0033979399 scopus 로고    scopus 로고
    • The N-terminal domain that distinguishes yeast from bacterial RNase III contains a dimerization signal required for efficient double-stranded RNA cleavage
    • Lamontagne B, Tremblay A, Abou ES. The N-terminal domain that distinguishes yeast from bacterial RNase III contains a dimerization signal required for efficient double-stranded RNA cleavage. Mol Cell Biol 2000, 20:1104-1115.
    • (2000) Mol Cell Biol , vol.20 , pp. 1104-1115
    • Lamontagne, B.1    Tremblay, A.2    Abou, E.S.3
  • 59
    • 0037126621 scopus 로고    scopus 로고
    • Solution structure of conserved AGNN tetraloops: insights into Rnt1p processing
    • Lebars I, Lamontagne B, Yoshizawa S, Abou Elela S, Fourmy D. Solution structure of conserved AGNN tetraloops: insights into Rnt1p processing. EMBO J 2001, 20:7250-7258.
    • (2001) EMBO J , vol.20 , pp. 7250-7258
    • Lebars, I.1    Lamontagne, B.2    Yoshizawa, S.3    Abou Elela, S.4    Fourmy, D.5
  • 60
    • 0037126626 scopus 로고    scopus 로고
    • A novel family of RNA tetraloop structure forms the recognition site for accharomyces cerevisiae RNase III
    • Wu H, Yang PK, Butcher SE, Kang S, Chanfreau G, Feigon J. A novel family of RNA tetraloop structure forms the recognition site for accharomyces cerevisiae RNase III. EMBO J 2001, 20:7240-7249.
    • (2001) EMBO J , vol.20 , pp. 7240-7249
    • Wu, H.1    Yang, P.K.2    Butcher, S.E.3    Kang, S.4    Chanfreau, G.5    Feigon, J.6
  • 61
    • 84872873185 scopus 로고    scopus 로고
    • Intrinsic dynamics of an extended hydrophobic core in the S. cerevisiae RNase III dsRBD contributes to recognition of specific RNA binding sites
    • doi: /10.1016/j.jmb.2012.11.025.
    • Hartman E, Wang Z, Zhang Q, Roy K, Chanfreau G, Feigon J. Intrinsic dynamics of an extended hydrophobic core in the S. cerevisiae RNase III dsRBD contributes to recognition of specific RNA binding sites. J Mol Biol 2013, 425:546-562. doi: /10.1016/j.jmb.2012.11.025.
    • (2013) J Mol Biol , vol.425 , pp. 546-562
    • Hartman, E.1    Wang, Z.2    Zhang, Q.3    Roy, K.4    Chanfreau, G.5    Feigon, J.6
  • 62
    • 79960173334 scopus 로고    scopus 로고
    • Structure of a yeast RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into binding specificity of dsRBDs
    • doi: 10.1016/j.str.2011.03.022.
    • Wang Z, Hartman E, Roy K, Chanfreau G, Feigon J. Structure of a yeast RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into binding specificity of dsRBDs. Structure 2011, 19:999-1010. doi: 10.1016/j.str.2011.03.022.
    • (2011) Structure , vol.19 , pp. 999-1010
    • Wang, Z.1    Hartman, E.2    Roy, K.3    Chanfreau, G.4    Feigon, J.5
  • 63
    • 0037432527 scopus 로고    scopus 로고
    • Sequence dependence of substrate recognition and cleavage by yeast RNase III
    • doi: 10.1016/S002202836(03)00231-6.
    • Lamontagne B, Ghazal G, Lebars I, Yoshizawa S, Fourmy D, Abou ES. Sequence dependence of substrate recognition and cleavage by yeast RNase III. J Mol Biol 2003, 327:985-1000. doi: 10.1016/S002202836(03)00231-6.
    • (2003) J Mol Biol , vol.327 , pp. 985-1000
    • Lamontagne, B.1    Ghazal, G.2    Lebars, I.3    Yoshizawa, S.4    Fourmy, D.5    Abou, E.S.6
  • 64
    • 49749141418 scopus 로고    scopus 로고
    • Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage
    • doi: 10.1021/bi800238u.
    • Lavoie M, Abou ES. Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage. Biochemistry 2008, 47:8514-8526. doi: 10.1021/bi800238u.
    • (2008) Biochemistry , vol.47 , pp. 8514-8526
    • Lavoie, M.1    Abou, E.S.2
  • 65
    • 15544371092 scopus 로고    scopus 로고
    • A conserved major groove antideterminant for Saccharomyces cerevisiae RNase III recognition
    • doi: 10.1021/bi047483u.
    • Sam M, Henras AK, Chanfreau G. A conserved major groove antideterminant for Saccharomyces cerevisiae RNase III recognition. Biochemistry 2005, 44:4181-4187. doi: 10.1021/bi047483u.
    • (2005) Biochemistry , vol.44 , pp. 4181-4187
    • Sam, M.1    Henras, A.K.2    Chanfreau, G.3
  • 66
    • 0035803562 scopus 로고    scopus 로고
    • Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease
    • Giorgi C, Fatica A, Nagel R, Bozzoni I. Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease. EMBO J 2001, 20:6856-6865.
    • (2001) EMBO J , vol.20 , pp. 6856-6865
    • Giorgi, C.1    Fatica, A.2    Nagel, R.3    Bozzoni, I.4
  • 67
    • 0036276292 scopus 로고    scopus 로고
    • A physical interaction between Gar1p and Rnt1p is required for the nuclear import of H/ACA small nucleolar RNA-associated proteins
    • Lamontagne B, Catala M, Yam Y, Larose S, God L, Abou ES. A physical interaction between Gar1p and Rnt1p is required for the nuclear import of H/ACA small nucleolar RNA-associated proteins. Mol Cell Biol 2002, 22:4792-4802.
    • (2002) Mol Cell Biol , vol.22 , pp. 4792-4802
    • Lamontagne, B.1    Catala, M.2    Yam, Y.3    Larose, S.4    God, L.5    Abou, E.S.6
  • 68
    • 33744520104 scopus 로고    scopus 로고
    • Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex
    • doi: 10.1016/j.cell.2006.03.043.
    • Han J, Lee Y, Yeom K-H, Nam J-W, Heo I, Rhee J-K, Sohn SY, Cho Y, Zhang B-T, Kim VN. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006, 125:887-901. doi: 10.1016/j.cell.2006.03.043.
    • (2006) Cell , vol.125 , pp. 887-901
    • Han, J.1    Lee, Y.2    Yeom, K.-H.3    Nam, J.-W.4    Heo, I.5    Rhee, J.-K.6    Sohn, S.Y.7    Cho, Y.8    Zhang, B.-T.9    Kim, V.N.10
  • 69
    • 10644234841 scopus 로고    scopus 로고
    • The Drosha-DGCR8 complex in primary microRNA processing
    • doi: 10.1101/gad.1262504.
    • Han J, Lee Y, Yeom K-H, Kim Y-K, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004, 18:3016-3027. doi: 10.1101/gad.1262504.
    • (2004) Genes Dev , vol.18 , pp. 3016-3027
    • Han, J.1    Lee, Y.2    Yeom, K.-H.3    Kim, Y.-K.4    Jin, H.5    Kim, V.N.6
  • 72
    • 78650396433 scopus 로고    scopus 로고
    • Dynamic origins of differential RNA binding function in two dsRBDs from the miRNA "Microprocessor" complex
    • doi: 10.1021/bi1015716.
    • Wostenberg C, Quarles KA, Showalter SA. Dynamic origins of differential RNA binding function in two dsRBDs from the miRNA "Microprocessor" complex. Biochemistry 2010, 49:10728-10736. doi: 10.1021/bi1015716.
    • (2010) Biochemistry , vol.49 , pp. 10728-10736
    • Wostenberg, C.1    Quarles, K.A.2    Showalter, S.A.3
  • 73
    • 0141860062 scopus 로고    scopus 로고
    • Mouse ribonuclease III. cDNA structure, expression analysis, and chromosomal location
    • Fortin KR, Nicholson RH, Nicholson AW. Mouse ribonuclease III. cDNA structure, expression analysis, and chromosomal location. BMC Genomics 2002, 3:26.
    • (2002) BMC Genomics , vol.3 , pp. 26
    • Fortin, K.R.1    Nicholson, R.H.2    Nicholson, A.W.3
  • 74
    • 33749984008 scopus 로고    scopus 로고
    • Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing
    • doi: 10.1093/nar/gkl458.
    • Yeom K-H, Lee Y, Han J, Suh MR, Kim VN. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res 2006, 34:4622-4629. doi: 10.1093/nar/gkl458.
    • (2006) Nucleic Acids Res , vol.34 , pp. 4622-4629
    • Yeom, K.-H.1    Lee, Y.2    Han, J.3    Suh, M.R.4    Kim, V.N.5
  • 75
    • 84873365736 scopus 로고    scopus 로고
    • Ensemble analysis of primary microRNA structure reveals an extensive capacity to deform near the Drosha cleavage site
    • doi: 10.1021/bi301452a.
    • Quarles KA, Sahu D, Havens MA, Forsyth ER, Wostenberg C, Hastings ML, Showalter SA. Ensemble analysis of primary microRNA structure reveals an extensive capacity to deform near the Drosha cleavage site. Biochemistry 2013, 52:795-807. doi: 10.1021/bi301452a.
    • (2013) Biochemistry , vol.52 , pp. 795-807
    • Quarles, K.A.1    Sahu, D.2    Havens, M.A.3    Forsyth, E.R.4    Wostenberg, C.5    Hastings, M.L.6    Showalter, S.A.7
  • 77
    • 79952997312 scopus 로고    scopus 로고
    • Improved annotation of C. elegans microRNAs by deep sequencing reveals structures associated with processing by Drosha and Dicer
    • Warf MB, Johnson WE, Bass BL. Improved annotation of C. elegans microRNAs by deep sequencing reveals structures associated with processing by Drosha and Dicer. RNA 2011, 17:563-577.
    • (2011) RNA , vol.17 , pp. 563-577
    • Warf, M.B.1    Johnson, W.E.2    Bass, B.L.3
  • 78
    • 77954378538 scopus 로고    scopus 로고
    • MD simulations of the dsRBP DGCR8 reveal correlated motions that may aid pri-miRNA binding
    • doi: 10.1016/j.bpj.2010.04.010.
    • Wostenberg C, Noid WG, Showalter SA. MD simulations of the dsRBP DGCR8 reveal correlated motions that may aid pri-miRNA binding. Biophys J 2010, 99:248-256. doi: 10.1016/j.bpj.2010.04.010.
    • (2010) Biophys J , vol.99 , pp. 248-256
    • Wostenberg, C.1    Noid, W.G.2    Showalter, S.A.3
  • 81
    • 78149316877 scopus 로고    scopus 로고
    • Noncanonical cytoplasmic processing of viral microRNAs
    • Shapiro JS, Varble A, Pham AM, Tenoever BR. Noncanonical cytoplasmic processing of viral microRNAs. RNA 2010, 16:2068-2074.
    • (2010) RNA , vol.16 , pp. 2068-2074
    • Shapiro, J.S.1    Varble, A.2    Pham, A.M.3    Tenoever, B.R.4
  • 82
    • 84862587403 scopus 로고    scopus 로고
    • Evidence for a cytoplasmic microprocessor of pri-miRNAs
    • Shapiro JS, Langlois RA, Pham AM, Tenoever BR. Evidence for a cytoplasmic microprocessor of pri-miRNAs. RNA 2012, 18:1338-1346.
    • (2012) RNA , vol.18 , pp. 1338-1346
    • Shapiro, J.S.1    Langlois, R.A.2    Pham, A.M.3    Tenoever, B.R.4
  • 83
    • 84879157009 scopus 로고    scopus 로고
    • Processing of virus-derived cytoplasmic primary-microRNAs
    • Shapiro JS. Processing of virus-derived cytoplasmic primary-microRNAs. Wiley Interdiscip Rev RNA 2013, 4:463-471.
    • (2013) Wiley Interdiscip Rev RNA , vol.4 , pp. 463-471
    • Shapiro, J.S.1
  • 85
    • 3142613181 scopus 로고    scopus 로고
    • Single processing center models for human dicer and bacterial RNase III
    • Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W. Single processing center models for human dicer and bacterial RNase III. Cell 2004, 118:57-68.
    • (2004) Cell , vol.118 , pp. 57-68
    • Zhang, H.1    Kolb, F.A.2    Jaskiewicz, L.3    Westhof, E.4    Filipowicz, W.5
  • 89
    • 84869037267 scopus 로고    scopus 로고
    • The loop position of shRNAs and pre-miRNAs is critical for the accuracy of Dicer processing in vivo
    • Gu S, Jin L, Zhang Y, Huang Y, Zhang F, Valdmanis PN, Kay MA. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of Dicer processing in vivo. Cell 2012, 151:900-911.
    • (2012) Cell , vol.151 , pp. 900-911
    • Gu, S.1    Jin, L.2    Zhang, Y.3    Huang, Y.4    Zhang, F.5    Valdmanis, P.N.6    Kay, M.A.7
  • 90
    • 84865513822 scopus 로고    scopus 로고
    • Coordinated activities of human dicer domains in regulatory RNA processing
    • doi: 10.1016/j.jmb.2012.06.009.
    • Ma E, Zhou K, Kidwell MA, Doudna JA. Coordinated activities of human dicer domains in regulatory RNA processing. J Mol Biol 2012, 422:466-476. doi: 10.1016/j.jmb.2012.06.009.
    • (2012) J Mol Biol , vol.422 , pp. 466-476
    • Ma, E.1    Zhou, K.2    Kidwell, M.A.3    Doudna, J.A.4
  • 92
    • 70349767012 scopus 로고    scopus 로고
    • Structure of the human dicer-TRBP complex by electron microscopy
    • doi: 10.1016/j.str.2009.08.013.
    • Lau PW, Potter CS, Carragher B, MacRae IJ. Structure of the human dicer-TRBP complex by electron microscopy. Structure 2009, 17:1326-1332. doi: 10.1016/j.str.2009.08.013.
    • (2009) Structure , vol.17 , pp. 1326-1332
    • Lau, P.W.1    Potter, C.S.2    Carragher, B.3    MacRae, I.J.4
  • 93
    • 79959872313 scopus 로고    scopus 로고
    • siRNA repositioning for guide strand selection by human dicer complexes
    • Noland CL, Ma E, Doudna JA. siRNA repositioning for guide strand selection by human dicer complexes. Mol Cell 2011, 43:110-121.
    • (2011) Mol Cell , vol.43 , pp. 110-121
    • Noland, C.L.1    Ma, E.2    Doudna, J.A.3
  • 94
    • 84867678226 scopus 로고    scopus 로고
    • TRBP alters human precursor microRNA processing in vitro
    • doi: 10.1261/rna.035501.112.
    • Lee HY, Doudna JA. TRBP alters human precursor microRNA processing in vitro. RNA 2012, 18:2012-2019. doi: 10.1261/rna.035501.112.
    • (2012) RNA , vol.18 , pp. 2012-2019
    • Lee, H.Y.1    Doudna, J.A.2
  • 95
    • 84868106469 scopus 로고    scopus 로고
    • Dicer partner proteins tune the length of mature miRNAs in flies and mammals
    • doi: 10.1016/j.cell.2012.09.027.
    • Fukunaga R, Han BW, Hung JH, Xu J, Weng Z, Zamore PD. Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 2012, 151:533-546. doi: 10.1016/j.cell.2012.09.027.
    • (2012) Cell , vol.151 , pp. 533-546
    • Fukunaga, R.1    Han, B.W.2    Hung, J.H.3    Xu, J.4    Weng, Z.5    Zamore, P.D.6
  • 96
    • 0037371743 scopus 로고    scopus 로고
    • Uridine insertion/deletion RNA editing in trypanosome mitochondria: a complex business
    • Simpson L, Sbicego S, Aphasizhev R. Uridine insertion/deletion RNA editing in trypanosome mitochondria: a complex business. RNA 2003, 9:265-276.
    • (2003) RNA , vol.9 , pp. 265-276
    • Simpson, L.1    Sbicego, S.2    Aphasizhev, R.3
  • 97
    • 28044439400 scopus 로고    scopus 로고
    • An essential RNase III insertion editing endonuclease in Trypanosoma brucei
    • doi: 10.1073/pnas.0506133102.
    • Carnes J, Trotter JR, Ernst NL, Steinberg A, Stuart K. An essential RNase III insertion editing endonuclease in Trypanosoma brucei. Proc Natl Acad Sci USA 2005, 102:16614-16619. doi: 10.1073/pnas.0506133102.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 16614-16619
    • Carnes, J.1    Trotter, J.R.2    Ernst, N.L.3    Steinberg, A.4    Stuart, K.5
  • 98
    • 37549054714 scopus 로고    scopus 로고
    • RNA editing in Trypanosoma brucei requires three different editosomes
    • doi: 10.1128/MCB.01374-07.
    • Carnes J, Trotter JR, Peltan A, Fleck M, Stuart K. RNA editing in Trypanosoma brucei requires three different editosomes. Mol Cell Biol 2008, 28:122-130. doi: 10.1128/MCB.01374-07.
    • (2008) Mol Cell Biol , vol.28 , pp. 122-130
    • Carnes, J.1    Trotter, J.R.2    Peltan, A.3    Fleck, M.4    Stuart, K.5
  • 99
    • 46649094360 scopus 로고    scopus 로고
    • Determinants for association and guide RNA-directed endonuclease cleavage by purified RNA editing complexes from Trypanosoma brucei
    • doi: 10.1016/j.jmb.2008.05.003.
    • Hernandez A, Panigrahi A, Cifuentes-Rojas C, Sacharidou A, Stuart K, Cruz-Reyes J. Determinants for association and guide RNA-directed endonuclease cleavage by purified RNA editing complexes from Trypanosoma brucei. J Mol Biol 2008, 381:35-48. doi: 10.1016/j.jmb.2008.05.003.
    • (2008) J Mol Biol , vol.381 , pp. 35-48
    • Hernandez, A.1    Panigrahi, A.2    Cifuentes-Rojas, C.3    Sacharidou, A.4    Stuart, K.5    Cruz-Reyes, J.6
  • 100
    • 79957595769 scopus 로고    scopus 로고
    • Endonuclease associations with three distinct editosomes in Trypanosoma brucei
    • doi: 10.1074/jbc.M111.228965.
    • Carnes J, Soares CZ, Wickham C, Stuart K. Endonuclease associations with three distinct editosomes in Trypanosoma brucei. J Biol Chem 2011, 286:19320-19330. doi: 10.1074/jbc.M111.228965.
    • (2011) J Biol Chem , vol.286 , pp. 19320-19330
    • Carnes, J.1    Soares, C.Z.2    Wickham, C.3    Stuart, K.4
  • 101
    • 84866634612 scopus 로고    scopus 로고
    • Mutational analysis of Trypanosoma brucei editosome proteins KREPB4 and KREPB5 reveal domains critical for function
    • doi: 10.1261/rna.035048.112.
    • Carnes J, Schnaufer A, Mcdermott SM, Domingo G, Proff R, Steinberg AG, Kurtz I, Stuart K. Mutational analysis of Trypanosoma brucei editosome proteins KREPB4 and KREPB5 reveal domains critical for function. RNA 2012, 18:1897-1909. doi: 10.1261/rna.035048.112.
    • (2012) RNA , vol.18 , pp. 1897-1909
    • Carnes, J.1    Schnaufer, A.2    Mcdermott, S.M.3    Domingo, G.4    Proff, R.5    Steinberg, A.G.6    Kurtz, I.7    Stuart, K.8
  • 102
    • 84857198283 scopus 로고    scopus 로고
    • Modular recognition of nucleic acids by PUF, TALE and PPR proteins
    • doi: 10.1039/c2mb05392f.
    • Flipovska A, Rackham O. Modular recognition of nucleic acids by PUF, TALE and PPR proteins. Mol Biosyst. 2012, 8:699-708. doi: 10.1039/c2mb05392f.
    • (2012) Mol Biosyst. , vol.8 , pp. 699-708
    • Flipovska, A.1    Rackham, O.2
  • 104
    • 0031980568 scopus 로고    scopus 로고
    • Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III-the effect of dsRNA binding on gene expression
    • Dasgupta S, Fernandez L, Kameyama L, Inada T, Nakamura Y, Pappas A, Court DL. Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III-the effect of dsRNA binding on gene expression. Mol Microbiol 1998, 28:629-640.
    • (1998) Mol Microbiol , vol.28 , pp. 629-640
    • Dasgupta, S.1    Fernandez, L.2    Kameyama, L.3    Inada, T.4    Nakamura, Y.5    Pappas, A.6    Court, D.L.7
  • 106
    • 63149143882 scopus 로고    scopus 로고
    • A plant-specific RNA-binding domain revealed through analysis of chloroplast group II intron splicing
    • doi: 10.1073/pnas.0812503106.
    • Kroeger TYS, Watkins KP, Friso G, van Wijk KJ, Barkan A. A plant-specific RNA-binding domain revealed through analysis of chloroplast group II intron splicing. Proc Natl Acad Sci U S A 2009, 106:4537-4542. doi: 10.1073/pnas.0812503106.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 4537-4542
    • Kroeger, T.Y.S.1    Watkins, K.P.2    Friso, G.3    van Wijk, K.J.4    Barkan, A.5
  • 107
    • 77954711237 scopus 로고    scopus 로고
    • Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry, and hierarchical clustering
    • doi: 10.1074/mcp.M000038-MCP201.
    • Olinares PD, Ponnala L, van Wijk KJ. Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry, and hierarchical clustering. Mol Cell Proteomics 2010, 9:1594-1615. doi: 10.1074/mcp.M000038-MCP201.
    • (2010) Mol Cell Proteomics , vol.9 , pp. 1594-1615
    • Olinares, P.D.1    Ponnala, L.2    van Wijk, K.J.3
  • 108
    • 0034803919 scopus 로고    scopus 로고
    • Degradation of double-stranded RNA by mammalian pancreatic-type ribonucleases
    • Libonati M, Sorrentino M. Degradation of double-stranded RNA by mammalian pancreatic-type ribonucleases. Methods Enzymol 2001, 341:234-248.
    • (2001) Methods Enzymol , vol.341 , pp. 234-248
    • Libonati, M.1    Sorrentino, M.2
  • 109
    • 84890292339 scopus 로고    scopus 로고
    • The superfamily of vertebrate-secreted ribonucleases
    • Nicholson AW, ed. Berlin-Heidelberg: Springer-Verlag;, doi: 10.1007/978-3-642-21078-5_1.
    • D'Alessio G. The superfamily of vertebrate-secreted ribonucleases. Nicholson AW, ed. Ribonucleases. Nucleic Acids and Molecular Biology 26. Berlin-Heidelberg: Springer-Verlag; 2011, 1-34. doi: 10.1007/978-3-642-21078-5_1.
    • (2011) Ribonucleases. Nucleic Acids and Molecular Biology 26 , pp. 1-34
    • D'Alessio, G.1
  • 110
    • 84864383746 scopus 로고    scopus 로고
    • Vertebrate secretory (RNase A) ribonucleases and host defense
    • Nicholson AW, ed. Berlin-Heidelberg: Springer-Verlag;, doi: 10.1007/978-3-642-21078-5_2.
    • Rosenberg HF. Vertebrate secretory (RNase A) ribonucleases and host defense. Nicholson AW, ed. Ribonucleases. Nucleic Acids and Molecular Biology 26. Berlin-Heidelberg: Springer-Verlag; 2011, 36-53. doi: 10.1007/978-3-642-21078-5_2.
    • (2011) Ribonucleases. Nucleic Acids and Molecular Biology 26 , pp. 36-53
    • Rosenberg, H.F.1
  • 111
    • 79952303123 scopus 로고    scopus 로고
    • Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3' to 5' exonuclease activity essential for immune suppression
    • doi: 10.1073/pnas.1016404108.
    • Hastie KM, Kimberlin CR, Zandonatti MA, MacRae IJ, Saphire EO. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3' to 5' exonuclease activity essential for immune suppression. Proc Natl Acad Sci U S A 2011, 108:2396-2401. doi: 10.1073/pnas.1016404108.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 2396-2401
    • Hastie, K.M.1    Kimberlin, C.R.2    Zandonatti, M.A.3    MacRae, I.J.4    Saphire, E.O.5
  • 112
    • 84865456858 scopus 로고    scopus 로고
    • Structural basis for the dsRNA specificity of the Lassa virus NP exonuclease
    • doi: 10.1371/journal.pone.0044211.
    • Hastie KM, King LB, Zandonatti MA, Saphire EO. Structural basis for the dsRNA specificity of the Lassa virus NP exonuclease. PLoS One 2012, 7:e44211. doi: 10.1371/journal.pone.0044211.
    • (2012) PLoS One , vol.7
    • Hastie, K.M.1    King, L.B.2    Zandonatti, M.A.3    Saphire, E.O.4
  • 113
    • 84859481301 scopus 로고    scopus 로고
    • Hiding the evidence: two strategies for innate immune evasion by hemorrhagic fever viruses
    • Hastie KM, Bale S, Kimberlin CR, Saphire EO. Hiding the evidence: two strategies for innate immune evasion by hemorrhagic fever viruses. Curr Opin Virol 2012, 2:151-156.
    • (2012) Curr Opin Virol , vol.2 , pp. 151-156
    • Hastie, K.M.1    Bale, S.2    Kimberlin, C.R.3    Saphire, E.O.4
  • 115
    • 79960206790 scopus 로고    scopus 로고
    • Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules
    • doi: 10.1093/nar/gkr090.
    • Babiskin AH, Smolke CD. Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules. Nucleic Acids Res 2011, 39:5299-5311. doi: 10.1093/nar/gkr090.
    • (2011) Nucleic Acids Res , vol.39 , pp. 5299-5311
    • Babiskin, A.H.1    Smolke, C.D.2
  • 116
    • 80455156003 scopus 로고    scopus 로고
    • Synthetic RNA modules for fine-tuning gene expression levels in yeast by modulating RNase III activity
    • doi: 10.1093/nar/gkr445.
    • Babiskin AH, Smolke CD. Synthetic RNA modules for fine-tuning gene expression levels in yeast by modulating RNase III activity. Nucleic Acids Res 2011, 39:8651-8664. doi: 10.1093/nar/gkr445.
    • (2011) Nucleic Acids Res , vol.39 , pp. 8651-8664
    • Babiskin, A.H.1    Smolke, C.D.2
  • 118
    • 84884172138 scopus 로고    scopus 로고
    • Redhu SK, Castronovo M, Nicholson AW. Digital imprinting of RNA recognition and processing on a self-assembled nucleic acid matrix. Sci Rep, doi: 10.1038/srep02550.
    • Redhu SK, Castronovo M, Nicholson AW. Digital imprinting of RNA recognition and processing on a self-assembled nucleic acid matrix. Sci Rep 2013, 3:2550. doi: 10.1038/srep02550.
    • (2013) , vol.3 , pp. 2550


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.