-
2
-
-
0029681842
-
Structure, reactivity and biology of double-stranded RNA
-
Nicholson AW. Structure, reactivity and biology of double-stranded RNA. Prog Nucleic Acid Res Mol Biol 1996, 52:1-65.
-
(1996)
Prog Nucleic Acid Res Mol Biol
, vol.52
, pp. 1-65
-
-
Nicholson, A.W.1
-
3
-
-
4544305449
-
Effects of length and location on the cellular response to double-stranded RNA
-
Wang Q, Carmichael GG. Effects of length and location on the cellular response to double-stranded RNA. Microbiol Mol Biol Rev 2004, 68:432-452.
-
(2004)
Microbiol Mol Biol Rev
, vol.68
, pp. 432-452
-
-
Wang, Q.1
Carmichael, G.G.2
-
4
-
-
34548129595
-
The response of mammalian cells to double-stranded RNA
-
Gantier MP, Williams BR. The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev 2007, 18:363-371.
-
(2007)
Cytokine Growth Factor Rev
, vol.18
, pp. 363-371
-
-
Gantier, M.P.1
Williams, B.R.2
-
5
-
-
84877869484
-
dsRNA sensing during viral infection: lessons from plants, worms, insects, and mammals
-
deFaria IJ, Olmo RP, Silva EG, Marques JT. dsRNA sensing during viral infection: lessons from plants, worms, insects, and mammals. J. Interferon Cytokine Res 2013, 33:239-253.
-
(2013)
J. Interferon Cytokine Res
, vol.33
, pp. 239-253
-
-
deFaria, I.J.1
Olmo, R.P.2
Silva, E.G.3
Marques, J.T.4
-
6
-
-
34250257369
-
RNA processing and degradation by RNase III
-
Belasco J, Brawerman G, eds. New York: Academic Press, Inc;
-
Court D. RNA processing and degradation by RNase III. Belasco J, Brawerman G, eds. Control of Messenger RNA Stability. New York: Academic Press, Inc; 1993, 71-116.
-
(1993)
Control of Messenger RNA Stability
, pp. 71-116
-
-
Court, D.1
-
7
-
-
84889676816
-
Ribonuclease III and the role of double-stranded RNA processing in bacterial systems
-
Nicholson AW, ed. Berlin-Heidelberg: Springer-Verlag;, doi: 10.1007/978-3-642-21078-5_11.
-
Nicholson AW. Ribonuclease III and the role of double-stranded RNA processing in bacterial systems. Nicholson AW, ed. Ribonucleases. Nucleic Acids and Molecular Biology 26. Berlin-Heidelberg: Springer-Verlag; 2011, 269-297. doi: 10.1007/978-3-642-21078-5_11.
-
(2011)
Ribonucleases. Nucleic Acids and Molecular Biology 26
, pp. 269-297
-
-
Nicholson, A.W.1
-
8
-
-
0035155389
-
The RNase III family: a conserved structure and expanding functions in eukaryotic dsRNA metabolism
-
Lamontagne B, LaRose S, Boulanger J, Elela SA. The RNase III family: a conserved structure and expanding functions in eukaryotic dsRNA metabolism. Curr Issues Mol Biol 2001, 3:71-78.
-
(2001)
Curr Issues Mol Biol
, vol.3
, pp. 71-78
-
-
Lamontagne, B.1
LaRose, S.2
Boulanger, J.3
Elela, S.A.4
-
9
-
-
0347224335
-
The ribonuclease III superfamily: forms and functions in RNA maturation, decay, and gene silencing
-
Hannon GJ, ed. Cold Spring Harbor, NY: Cold Spring Harbor Press;
-
Nicholson AW. The ribonuclease III superfamily: forms and functions in RNA maturation, decay, and gene silencing. Hannon GJ, ed. RNAi: A Guide to Gene Silencing. Cold Spring Harbor, NY: Cold Spring Harbor Press; 2003, 149-174.
-
(2003)
RNAi: A Guide to Gene Silencing
, pp. 149-174
-
-
Nicholson, A.W.1
-
10
-
-
33846927800
-
Ribonuclease revisited: structural insights into ribonuclease III family enzymes
-
MacRae IJ, Doudna JA. Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 2007, 17:1380145.
-
(2007)
Curr Opin Struct Biol
, vol.17
, pp. 1380145
-
-
MacRae, I.J.1
Doudna, J.A.2
-
12
-
-
0033557148
-
A'-form RNA double helix in the single crystal structure of r(UGAGCUUCGGCUC)
-
Tanaka Y, Fujii S, Hiroaki H, Sakata T, Tanaka T, Uesugi S, Tomita K, Kyogoku Y. A'-form RNA double helix in the single crystal structure of r(UGAGCUUCGGCUC). Nucleic Acids Res 1999, 27:949-955.
-
(1999)
Nucleic Acids Res
, vol.27
, pp. 949-955
-
-
Tanaka, Y.1
Fujii, S.2
Hiroaki, H.3
Sakata, T.4
Tanaka, T.5
Uesugi, S.6
Tomita, K.7
Kyogoku, Y.8
-
13
-
-
77953293106
-
A'-form RNA helices are required for cytoplasmic mRNA transport in Drosophila
-
doi: 10.1038/nsmb.1813.
-
Bullock SL, Ringel I, Ish-Horowicz D, Lukavsky PJ. A'-form RNA helices are required for cytoplasmic mRNA transport in Drosophila. Nat Struct Mol Biol 2010, 17:703-710. doi: 10.1038/nsmb.1813.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 703-710
-
-
Bullock, S.L.1
Ringel, I.2
Ish-Horowicz, D.3
Lukavsky, P.J.4
-
14
-
-
0034655642
-
Hexahydrated magnesium ions bind in the deep major groove and at the outer mouth of A-form nucleic acid duplexes
-
Robinson H, Gao Y-G, Sanishvili R, Joachimiak A, Wang AH-J. Hexahydrated magnesium ions bind in the deep major groove and at the outer mouth of A-form nucleic acid duplexes. Nucleic Acids Res 2000, 28:1760-1766.
-
(2000)
Nucleic Acids Res
, vol.28
, pp. 1760-1766
-
-
Robinson, H.1
Gao, Y.-G.2
Sanishvili, R.3
Joachimiak, A.4
Wang, A.-J.5
-
15
-
-
67651163671
-
Both helix topology and counterion distribution contribute to the more effective charge screening in dsRNA compared with dsDNA
-
doi: 10.1093/nar/gkp257.
-
Pabit SA, Qiu X, Lamb JA, Li L, Meisburger SP, Pollack L. Both helix topology and counterion distribution contribute to the more effective charge screening in dsRNA compared with dsDNA. Nucleic Acids Res 2009, 37:3887-3896. doi: 10.1093/nar/gkp257.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 3887-3896
-
-
Pabit, S.A.1
Qiu, X.2
Lamb, J.A.3
Li, L.4
Meisburger, S.P.5
Pollack, L.6
-
16
-
-
79952504671
-
Double-stranded RNA resists condensation
-
doi: 10.1103/PhysRevLett.106.108101.
-
Li L, Pabit SA, Meisburger SP, Pollack L. Double-stranded RNA resists condensation. Phys Rev Lett 2011, 106:108101. doi: 10.1103/PhysRevLett.106.108101.
-
(2011)
Phys Rev Lett
, vol.106
, pp. 108101
-
-
Li, L.1
Pabit, S.A.2
Meisburger, S.P.3
Pollack, L.4
-
17
-
-
22144455993
-
Single-molecule measurements of the persistence length of double-stranded RNA
-
doi: 10.1529/biophysj.104.052811.
-
Abels JA, Moreno-Herrero F, van der Heijden T, Dekker C, Dekker NH. Single-molecule measurements of the persistence length of double-stranded RNA. Biophys J 2005, 88:2737-2744. doi: 10.1529/biophysj.104.052811.
-
(2005)
Biophys J
, vol.88
, pp. 2737-2744
-
-
Abels, J.A.1
Moreno-Herrero, F.2
van der Heijden, T.3
Dekker, C.4
Dekker, N.H.5
-
18
-
-
77957350921
-
Toward a consensus view of duplex RNA flexibility
-
doi: 10.1016/j.bpj.2010.06.061.
-
Faustino I, Pérez A, Orozco M. Toward a consensus view of duplex RNA flexibility. Biophys J 2010, 99:1876-1885. doi: 10.1016/j.bpj.2010.06.061.
-
(2010)
Biophys J
, vol.99
, pp. 1876-1885
-
-
Faustino, I.1
Pérez, A.2
Orozco, M.3
-
19
-
-
0025880241
-
Phased adenine tracts in double-stranded RNA do not induce sequence-directed bending
-
Wang Y-H, Howard MT, Griffith JD. Phased adenine tracts in double-stranded RNA do not induce sequence-directed bending. Biochemistry 1991, 30:5443-5449.
-
(1991)
Biochemistry
, vol.30
, pp. 5443-5449
-
-
Wang, Y.-H.1
Howard, M.T.2
Griffith, J.D.3
-
20
-
-
0025906148
-
Electrophoretic and hydrodynamic properties of duplex ribonucleic acid molecules transcribed in vitro: evidence that A-tracts do not generate curvature in RNA
-
Gast F-U, Hagerman PJ. Electrophoretic and hydrodynamic properties of duplex ribonucleic acid molecules transcribed in vitro: evidence that A-tracts do not generate curvature in RNA. Biochemistry 1991, 30:4268-4277.
-
(1991)
Biochemistry
, vol.30
, pp. 4268-4277
-
-
Gast, F.-U.1
Hagerman, P.J.2
-
21
-
-
0029913806
-
The influence of symmetric internal loops on the flexibility of RNA
-
Zacharias M, Hagerman PJ. The influence of symmetric internal loops on the flexibility of RNA. J Mol Biol 1996, 257:276-289.
-
(1996)
J Mol Biol
, vol.257
, pp. 276-289
-
-
Zacharias, M.1
Hagerman, P.J.2
-
22
-
-
0028969693
-
Bulge-induced bends in RNA: quantification by transient electric birefringence
-
Zacharias M, Hagerman PJ. Bulge-induced bends in RNA: quantification by transient electric birefringence. J Mol Biol 1995, 247:486-500.
-
(1995)
J Mol Biol
, vol.247
, pp. 486-500
-
-
Zacharias, M.1
Hagerman, P.J.2
-
23
-
-
40649115979
-
The mechanism of RNase III action: how dicer dices
-
Ji X. The mechanism of RNase III action: how dicer dices. Curr Top Microbiol Immunol 2008, 320:99-116.
-
(2008)
Curr Top Microbiol Immunol
, vol.320
, pp. 99-116
-
-
Ji, X.1
-
24
-
-
84878270899
-
RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence
-
doi: 10.1007/s00018-012-1119-x.
-
Masliah G, Barraud P, Allain FHT. RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence. Cell Mol Life Sci 2013, 70:1875-1895. doi: 10.1007/s00018-012-1119-x.
-
(2013)
Cell Mol Life Sci
, vol.70
, pp. 1875-1895
-
-
Masliah, G.1
Barraud, P.2
Allain, F.H.T.3
-
25
-
-
43449118061
-
Mini-III, an unusual member of the RNase III family of enzymes, catalyses 23S ribosomal RNA maturation in B. subtilis
-
doi: 10.1111/j.1365-2958.2008.06207.x.
-
Redko Y, Bechhofer DH, Condon C. Mini-III, an unusual member of the RNase III family of enzymes, catalyses 23S ribosomal RNA maturation in B. subtilis. Mol Microbiol 2008, 68:1096-1106. doi: 10.1111/j.1365-2958.2008.06207.x.
-
(2008)
Mol Microbiol
, vol.68
, pp. 1096-1106
-
-
Redko, Y.1
Bechhofer, D.H.2
Condon, C.3
-
26
-
-
0035846580
-
Intrinsic double-stranded-RNA processing activity of Escherichia coli ribonuclease III lacking the dsRNA-binding domain
-
Sun W, Jun E-J, Nicholson AW. Intrinsic double-stranded-RNA processing activity of Escherichia coli ribonuclease III lacking the dsRNA-binding domain. Biochemistry 2001, 40:14976-14984.
-
(2001)
Biochemistry
, vol.40
, pp. 14976-14984
-
-
Sun, W.1
Jun, E.-J.2
Nicholson, A.W.3
-
27
-
-
0017116036
-
RNase III cleavage of single-stranded RNA. Effect of ionic strength on the fidelity of cleavage
-
Dunn JJ. RNase III cleavage of single-stranded RNA. Effect of ionic strength on the fidelity of cleavage. J Biol Chem 1976, 251:3807-3814.
-
(1976)
J Biol Chem
, vol.251
, pp. 3807-3814
-
-
Dunn, J.J.1
-
28
-
-
0035662491
-
Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage
-
Blaszczyk J, Tropea JE, Bubunenko M, Routzahn KM, Waugh DS, Court DL, Ji X. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure 2001, 9:1225-1236.
-
(2001)
Structure
, vol.9
, pp. 1225-1236
-
-
Blaszczyk, J.1
Tropea, J.E.2
Bubunenko, M.3
Routzahn, K.M.4
Waugh, D.S.5
Court, D.L.6
Ji, X.7
-
29
-
-
1542581581
-
Noncatalytic assembly of ribonuclease III with double-stranded RNA
-
doi: 10.1016/j.str.2004.02.004.
-
Blaszczyk J, Gan J, Tropea JE, Court DL, Waugh DS, Ji X. Noncatalytic assembly of ribonuclease III with double-stranded RNA. Structure 2004, 12:457-466. doi: 10.1016/j.str.2004.02.004.
-
(2004)
Structure
, vol.12
, pp. 457-466
-
-
Blaszczyk, J.1
Gan, J.2
Tropea, J.E.3
Court, D.L.4
Waugh, D.S.5
Ji, X.6
-
30
-
-
26444436343
-
Intermediate states of ribonuclease III in complex with double-stranded RNA
-
doi: 10.1016/j.str.2005.06.014.
-
Gan J, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X. Intermediate states of ribonuclease III in complex with double-stranded RNA. Structure 2005, 13:1435-1442. doi: 10.1016/j.str.2005.06.014.
-
(2005)
Structure
, vol.13
, pp. 1435-1442
-
-
Gan, J.1
Tropea, J.E.2
Austin, B.P.3
Court, D.L.4
Waugh, D.S.5
Ji, X.6
-
31
-
-
33746461896
-
Structural basis for non-catalytic and catalytic activities of ribonuclease III
-
doi: 10.1107/S090744490601153X.
-
Ji X. Structural basis for non-catalytic and catalytic activities of ribonuclease III. Acta Crystallogr D Biol Crystallogr 2006, D62:933-940. doi: 10.1107/S090744490601153X.
-
(2006)
Acta Crystallogr D Biol Crystallogr
, vol.62
, pp. 933-940
-
-
Ji, X.1
-
32
-
-
25844471038
-
Structure of the nuclease domain of ribonuclease III from M. tuberculosis at 2.1Å
-
doi: 10.1110/ps.051665905.
-
Akey DL, Berger JM. Structure of the nuclease domain of ribonuclease III from M. tuberculosis at 2.1Å. Protein Sci 2005, 14:2744-2750. doi: 10.1110/ps.051665905.
-
(2005)
Protein Sci
, vol.14
, pp. 2744-2750
-
-
Akey, D.L.1
Berger, J.M.2
-
33
-
-
31044448524
-
Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III
-
doi: 10.1016/j.cell.2005.11.034.
-
Gan J, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X. Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Cell 2006, 1245:355-366. doi: 10.1016/j.cell.2005.11.034.
-
(2006)
Cell
, vol.1245
, pp. 355-366
-
-
Gan, J.1
Tropea, J.E.2
Austin, B.P.3
Court, D.L.4
Waugh, D.S.5
Ji, X.6
-
34
-
-
0036294225
-
Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis
-
Campbell FE Jr, Cassano AG, Anderson VE, Harris ME. Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis. J Mol Biol 2002, 317:21-40.
-
(2002)
J Mol Biol
, vol.317
, pp. 21-40
-
-
Campbell Jr, F.E.1
Cassano, A.G.2
Anderson, V.E.3
Harris, M.E.4
-
35
-
-
0029976320
-
Defining the enzyme binding domain of a ribonuclease III processing signal. Ethylation interference and hydroxyl radical footprinting using catalytically inactive RNase III mutants
-
Li H, Nicholson AW. Defining the enzyme binding domain of a ribonuclease III processing signal. Ethylation interference and hydroxyl radical footprinting using catalytically inactive RNase III mutants. EMBO J 1996, 15:1421-1433.
-
(1996)
EMBO J
, vol.15
, pp. 1421-1433
-
-
Li, H.1
Nicholson, A.W.2
-
36
-
-
13844312491
-
Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis
-
Sun W, Pertzev A, Nicholson AW. Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis. Nucleic Acids Res 2005, 33:807-815.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 807-815
-
-
Sun, W.1
Pertzev, A.2
Nicholson, A.W.3
-
37
-
-
36849013062
-
A stepwise model for double-stranded RNA processing by ribonuclease III
-
doi: 10.1111/j.1365-2958.2007.06032.x.
-
Gan J, Shaw G, Tropea JE, Waugh DS, Court DL, Ji X. A stepwise model for double-stranded RNA processing by ribonuclease III. Mol Microbiol 2008, 67:143-154. doi: 10.1111/j.1365-2958.2007.06032.x.
-
(2008)
Mol Microbiol
, vol.67
, pp. 143-154
-
-
Gan, J.1
Shaw, G.2
Tropea, J.E.3
Waugh, D.S.4
Court, D.L.5
Ji, X.6
-
38
-
-
0038136893
-
Why do divalent metal ions either promote or inhibit enzymatic reactions?
-
doi: 10.1074/jbc.C200664200.
-
Mordasini T, Curioni A, Andreoni W. Why do divalent metal ions either promote or inhibit enzymatic reactions? J Biol Chem 2003, 278:4381-4384. doi: 10.1074/jbc.C200664200.
-
(2003)
J Biol Chem
, vol.278
, pp. 4381-4384
-
-
Mordasini, T.1
Curioni, A.2
Andreoni, W.3
-
39
-
-
39749139400
-
Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro
-
doi: 10.1042/BJ20071047.
-
Meng W, Nicholson AW. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro. Biochem J 2008, 410:39-48. doi: 10.1042/BJ20071047.
-
(2008)
Biochem J
, vol.410
, pp. 39-48
-
-
Meng, W.1
Nicholson, A.W.2
-
40
-
-
0037042215
-
One functional subunit is sufficient for catalytic activity and substrate specificity for Escherichia coli endoribonuclease III artificial heterodimers
-
Conrad C, Schmitt JG, Evguenieva-Hackenberg E, Klug G. One functional subunit is sufficient for catalytic activity and substrate specificity for Escherichia coli endoribonuclease III artificial heterodimers. FEBS Lett 2002, 518:93-96.
-
(2002)
FEBS Lett
, vol.518
, pp. 93-96
-
-
Conrad, C.1
Schmitt, J.G.2
Evguenieva-Hackenberg, E.3
Klug, G.4
-
41
-
-
0031470503
-
Regulation of ribonuclease III processing by double-helical sequence antideterminants
-
Zhang K, Nicholson AW. Regulation of ribonuclease III processing by double-helical sequence antideterminants. Proc Natl Acad Sci U S A 1997, 94:13437-13441.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 13437-13441
-
-
Zhang, K.1
Nicholson, A.W.2
-
42
-
-
33747038694
-
Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III
-
Pertzev A, Nicholson AW. Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III. Nucleic Acids Res 2006, 34:3708-3721.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 3708-3721
-
-
Pertzev, A.1
Nicholson, A.W.2
-
43
-
-
79954586093
-
Characterization of Aquifex aeolicus ribonuclease III and the reactivity epitopes of its pre-ribosomal RNA substrates
-
Shi Z, Nicholson RH, Jaggi R, Nicholson AW. Characterization of Aquifex aeolicus ribonuclease III and the reactivity epitopes of its pre-ribosomal RNA substrates. Nucleic Acids Res 2011, 39:2756-2768.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 2756-2768
-
-
Shi, Z.1
Nicholson, R.H.2
Jaggi, R.3
Nicholson, A.W.4
-
44
-
-
0029671252
-
Antideterminants present in minihelix(Sec) hinder its recognition by prokaryotic elongation factor Tu
-
Rudinger J, Hillenbrandt R, Sprinzl M, Giegé R. Antideterminants present in minihelix(Sec) hinder its recognition by prokaryotic elongation factor Tu. EMBO J 1996, 15:650-657.
-
(1996)
EMBO J
, vol.15
, pp. 650-657
-
-
Rudinger, J.1
Hillenbrandt, R.2
Sprinzl, M.3
Giegé, R.4
-
45
-
-
0037736794
-
RNA structure-dependent uncoupling of substrate recognition and cleavage by Escherichia coli ribonuclease III
-
Calin-Jageman I, Nicholson AW. RNA structure-dependent uncoupling of substrate recognition and cleavage by Escherichia coli ribonuclease III. Nucleic Acids Res 2003, 31:2381-2392.
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 2381-2392
-
-
Calin-Jageman, I.1
Nicholson, A.W.2
-
46
-
-
60649120832
-
Ribosomal protein L3 bound to 23S precursor rRNA stimulates its maturation by Min-III ribonuclease
-
doi: 10.1111/j.1365-2958.2008.06591.x.
-
Redko Y, Condon C. Ribosomal protein L3 bound to 23S precursor rRNA stimulates its maturation by Min-III ribonuclease. Mol Microbiol 2009, 71:1145-1154. doi: 10.1111/j.1365-2958.2008.06591.x.
-
(2009)
Mol Microbiol
, vol.71
, pp. 1145-1154
-
-
Redko, Y.1
Condon, C.2
-
47
-
-
84055200530
-
Genome-wide antisense transcription drives mRNA processing in bacteria
-
doi: 10.1073/pnas.1113521108.
-
Lasa I, Toledo-Arana A, Dobin A, Lasa I, Villanueva M, de los Mozos IR, Vergara-Irigaray M, Segura V, Fagegaltier D, Penadés JR, et al. Genome-wide antisense transcription drives mRNA processing in bacteria. Proc Natl Acad Sci USA 2011, 108:20172-20177. doi: 10.1073/pnas.1113521108.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 20172-20177
-
-
Lasa, I.1
Toledo-Arana, A.2
Dobin, A.3
Lasa, I.4
Villanueva, M.5
de los Mozos, I.R.6
Vergara-Irigaray, M.7
Segura, V.8
Fagegaltier, D.9
Penadés, J.R.10
-
48
-
-
84864052473
-
Global regulatory functions of the Staphylococcus aureus endoribonuclease III in gene expression
-
doi: 10.1371/journal.pgen.1002782.
-
Lioliou E, Sharma CM, Caldelari I, Helfer A-C, Fechter P, Vandenesch F, Vogel J, Romby P. Global regulatory functions of the Staphylococcus aureus endoribonuclease III in gene expression. PLoS Genet 2012, 8:e1002782. doi: 10.1371/journal.pgen.1002782.
-
(2012)
PLoS Genet
, vol.8
-
-
Lioliou, E.1
Sharma, C.M.2
Caldelari, I.3
Helfer, A.-C.4
Fechter, P.5
Vandenesch, F.6
Vogel, J.7
Romby, P.8
-
49
-
-
0022423266
-
Cleavage within an RNase III site can control mRNA stability and protein synthesis in vivo
-
Panayotatos N, Truong K. Cleavage within an RNase III site can control mRNA stability and protein synthesis in vivo. Nucleic Acids Res 1985, 13:2227-2240.
-
(1985)
Nucleic Acids Res
, vol.13
, pp. 2227-2240
-
-
Panayotatos, N.1
Truong, K.2
-
50
-
-
0037995439
-
Mutational analysis of an RNA internal loop as a reactivity epitope for Escherichia coli ribonuclease III substrates
-
Calin-Jageman I, Nicholson AW. Mutational analysis of an RNA internal loop as a reactivity epitope for Escherichia coli ribonuclease III substrates. Biochemistry 2003, 42:5025-5034.
-
(2003)
Biochemistry
, vol.42
, pp. 5025-5034
-
-
Calin-Jageman, I.1
Nicholson, A.W.2
-
51
-
-
0029856238
-
RNase III autoregulation: structure and function of rncO, the posttranscriptional "operator"
-
Matsunaga J, Simons EL, Simons RW. RNase III autoregulation: structure and function of rncO, the posttranscriptional "operator". RNA 1996, 2:1228-1240.
-
(1996)
RNA
, vol.2
, pp. 1228-1240
-
-
Matsunaga, J.1
Simons, E.L.2
Simons, R.W.3
-
52
-
-
0021099474
-
RNase III is positively regulated by T7 protein kinase
-
Mayer JE, Schweiger M. RNase III is positively regulated by T7 protein kinase. J Biol Chem 1983, 258:5340-5343.
-
(1983)
J Biol Chem
, vol.258
, pp. 5340-5343
-
-
Mayer, J.E.1
Schweiger, M.2
-
53
-
-
84865987855
-
Bacteriophage T7 protein kinase: site of inhibitory autophosphorylation, and use of dephosphorylated enzyme for efficient modification of protein in vitro
-
Gone S, Nicholson AW. Bacteriophage T7 protein kinase: site of inhibitory autophosphorylation, and use of dephosphorylated enzyme for efficient modification of protein in vitro. Protein Expr Purif 2012, 85:218-223.
-
(2012)
Protein Expr Purif
, vol.85
, pp. 218-223
-
-
Gone, S.1
Nicholson, A.W.2
-
54
-
-
0020964297
-
Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements
-
Dunn JJ, Studier FW. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol 1983, 166:477-535.
-
(1983)
J Mol Biol
, vol.166
, pp. 477-535
-
-
Dunn, J.J.1
Studier, F.W.2
-
55
-
-
58049193963
-
YmdB: a stress-responsive ribonuclease-binding regulator of E. coli RNase III activity
-
doi: 10.1101/gad.1729508.
-
Kim K, Manasherob R, Cohen SN. YmdB: a stress-responsive ribonuclease-binding regulator of E. coli RNase III activity. Genes Dev 2008, 22:3497-3508. doi: 10.1101/gad.1729508.
-
(2008)
Genes Dev
, vol.22
, pp. 3497-3508
-
-
Kim, K.1
Manasherob, R.2
Cohen, S.N.3
-
56
-
-
79953890881
-
Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases
-
doi: 10.1074/jbc.M110.206771.
-
Chen D, Vollmar M, Ross MN, Phillips C, Kraehenbuehl R, Slade D, Mehrotra PV, von Delft F, Crosthwaite SK, Gileadi O, et al. Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases. J Biol Chem 2011, 286:13261-13271. doi: 10.1074/jbc.M110.206771.
-
(2011)
J Biol Chem
, vol.286
, pp. 13261-13271
-
-
Chen, D.1
Vollmar, M.2
Ross, M.N.3
Phillips, C.4
Kraehenbuehl, R.5
Slade, D.6
Mehrotra, P.V.7
von Delft, F.8
Crosthwaite, S.K.9
Gileadi, O.10
-
57
-
-
84856800818
-
RNase III initiates rapid degradation of proU mRNA upon hypo-osmotic stress in Escherichia coli
-
doi: 10.4161/rna.9.1.18228.
-
Kavalchuk K, Srinivasan M, Schnetz K. RNase III initiates rapid degradation of proU mRNA upon hypo-osmotic stress in Escherichia coli. RNA Biol 2012, 9:1-12. doi: 10.4161/rna.9.1.18228.
-
(2012)
RNA Biol
, vol.9
, pp. 1-12
-
-
Kavalchuk, K.1
Srinivasan, M.2
Schnetz, K.3
-
58
-
-
0033979399
-
The N-terminal domain that distinguishes yeast from bacterial RNase III contains a dimerization signal required for efficient double-stranded RNA cleavage
-
Lamontagne B, Tremblay A, Abou ES. The N-terminal domain that distinguishes yeast from bacterial RNase III contains a dimerization signal required for efficient double-stranded RNA cleavage. Mol Cell Biol 2000, 20:1104-1115.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 1104-1115
-
-
Lamontagne, B.1
Tremblay, A.2
Abou, E.S.3
-
59
-
-
0037126621
-
Solution structure of conserved AGNN tetraloops: insights into Rnt1p processing
-
Lebars I, Lamontagne B, Yoshizawa S, Abou Elela S, Fourmy D. Solution structure of conserved AGNN tetraloops: insights into Rnt1p processing. EMBO J 2001, 20:7250-7258.
-
(2001)
EMBO J
, vol.20
, pp. 7250-7258
-
-
Lebars, I.1
Lamontagne, B.2
Yoshizawa, S.3
Abou Elela, S.4
Fourmy, D.5
-
60
-
-
0037126626
-
A novel family of RNA tetraloop structure forms the recognition site for accharomyces cerevisiae RNase III
-
Wu H, Yang PK, Butcher SE, Kang S, Chanfreau G, Feigon J. A novel family of RNA tetraloop structure forms the recognition site for accharomyces cerevisiae RNase III. EMBO J 2001, 20:7240-7249.
-
(2001)
EMBO J
, vol.20
, pp. 7240-7249
-
-
Wu, H.1
Yang, P.K.2
Butcher, S.E.3
Kang, S.4
Chanfreau, G.5
Feigon, J.6
-
61
-
-
84872873185
-
Intrinsic dynamics of an extended hydrophobic core in the S. cerevisiae RNase III dsRBD contributes to recognition of specific RNA binding sites
-
doi: /10.1016/j.jmb.2012.11.025.
-
Hartman E, Wang Z, Zhang Q, Roy K, Chanfreau G, Feigon J. Intrinsic dynamics of an extended hydrophobic core in the S. cerevisiae RNase III dsRBD contributes to recognition of specific RNA binding sites. J Mol Biol 2013, 425:546-562. doi: /10.1016/j.jmb.2012.11.025.
-
(2013)
J Mol Biol
, vol.425
, pp. 546-562
-
-
Hartman, E.1
Wang, Z.2
Zhang, Q.3
Roy, K.4
Chanfreau, G.5
Feigon, J.6
-
62
-
-
79960173334
-
Structure of a yeast RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into binding specificity of dsRBDs
-
doi: 10.1016/j.str.2011.03.022.
-
Wang Z, Hartman E, Roy K, Chanfreau G, Feigon J. Structure of a yeast RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into binding specificity of dsRBDs. Structure 2011, 19:999-1010. doi: 10.1016/j.str.2011.03.022.
-
(2011)
Structure
, vol.19
, pp. 999-1010
-
-
Wang, Z.1
Hartman, E.2
Roy, K.3
Chanfreau, G.4
Feigon, J.5
-
63
-
-
0037432527
-
Sequence dependence of substrate recognition and cleavage by yeast RNase III
-
doi: 10.1016/S002202836(03)00231-6.
-
Lamontagne B, Ghazal G, Lebars I, Yoshizawa S, Fourmy D, Abou ES. Sequence dependence of substrate recognition and cleavage by yeast RNase III. J Mol Biol 2003, 327:985-1000. doi: 10.1016/S002202836(03)00231-6.
-
(2003)
J Mol Biol
, vol.327
, pp. 985-1000
-
-
Lamontagne, B.1
Ghazal, G.2
Lebars, I.3
Yoshizawa, S.4
Fourmy, D.5
Abou, E.S.6
-
64
-
-
49749141418
-
Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage
-
doi: 10.1021/bi800238u.
-
Lavoie M, Abou ES. Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage. Biochemistry 2008, 47:8514-8526. doi: 10.1021/bi800238u.
-
(2008)
Biochemistry
, vol.47
, pp. 8514-8526
-
-
Lavoie, M.1
Abou, E.S.2
-
65
-
-
15544371092
-
A conserved major groove antideterminant for Saccharomyces cerevisiae RNase III recognition
-
doi: 10.1021/bi047483u.
-
Sam M, Henras AK, Chanfreau G. A conserved major groove antideterminant for Saccharomyces cerevisiae RNase III recognition. Biochemistry 2005, 44:4181-4187. doi: 10.1021/bi047483u.
-
(2005)
Biochemistry
, vol.44
, pp. 4181-4187
-
-
Sam, M.1
Henras, A.K.2
Chanfreau, G.3
-
66
-
-
0035803562
-
Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease
-
Giorgi C, Fatica A, Nagel R, Bozzoni I. Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease. EMBO J 2001, 20:6856-6865.
-
(2001)
EMBO J
, vol.20
, pp. 6856-6865
-
-
Giorgi, C.1
Fatica, A.2
Nagel, R.3
Bozzoni, I.4
-
67
-
-
0036276292
-
A physical interaction between Gar1p and Rnt1p is required for the nuclear import of H/ACA small nucleolar RNA-associated proteins
-
Lamontagne B, Catala M, Yam Y, Larose S, God L, Abou ES. A physical interaction between Gar1p and Rnt1p is required for the nuclear import of H/ACA small nucleolar RNA-associated proteins. Mol Cell Biol 2002, 22:4792-4802.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 4792-4802
-
-
Lamontagne, B.1
Catala, M.2
Yam, Y.3
Larose, S.4
God, L.5
Abou, E.S.6
-
68
-
-
33744520104
-
Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex
-
doi: 10.1016/j.cell.2006.03.043.
-
Han J, Lee Y, Yeom K-H, Nam J-W, Heo I, Rhee J-K, Sohn SY, Cho Y, Zhang B-T, Kim VN. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006, 125:887-901. doi: 10.1016/j.cell.2006.03.043.
-
(2006)
Cell
, vol.125
, pp. 887-901
-
-
Han, J.1
Lee, Y.2
Yeom, K.-H.3
Nam, J.-W.4
Heo, I.5
Rhee, J.-K.6
Sohn, S.Y.7
Cho, Y.8
Zhang, B.-T.9
Kim, V.N.10
-
69
-
-
10644234841
-
The Drosha-DGCR8 complex in primary microRNA processing
-
doi: 10.1101/gad.1262504.
-
Han J, Lee Y, Yeom K-H, Kim Y-K, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004, 18:3016-3027. doi: 10.1101/gad.1262504.
-
(2004)
Genes Dev
, vol.18
, pp. 3016-3027
-
-
Han, J.1
Lee, Y.2
Yeom, K.-H.3
Kim, Y.-K.4
Jin, H.5
Kim, V.N.6
-
71
-
-
78650324516
-
Solution structure of the Drosha double-stranded RNA-binding domain
-
doi: 10.1186/1758-907X-1-2.
-
Mueller GA, Miller MT, DeRose EF, Ghosh M, London RE, Tanaka-Hall TM. Solution structure of the Drosha double-stranded RNA-binding domain. Silence 2010, 1:2. doi: 10.1186/1758-907X-1-2.
-
(2010)
Silence
, vol.1
, pp. 2
-
-
Mueller, G.A.1
Miller, M.T.2
DeRose, E.F.3
Ghosh, M.4
London, R.E.5
Tanaka-Hall, T.M.6
-
72
-
-
78650396433
-
Dynamic origins of differential RNA binding function in two dsRBDs from the miRNA "Microprocessor" complex
-
doi: 10.1021/bi1015716.
-
Wostenberg C, Quarles KA, Showalter SA. Dynamic origins of differential RNA binding function in two dsRBDs from the miRNA "Microprocessor" complex. Biochemistry 2010, 49:10728-10736. doi: 10.1021/bi1015716.
-
(2010)
Biochemistry
, vol.49
, pp. 10728-10736
-
-
Wostenberg, C.1
Quarles, K.A.2
Showalter, S.A.3
-
73
-
-
0141860062
-
Mouse ribonuclease III. cDNA structure, expression analysis, and chromosomal location
-
Fortin KR, Nicholson RH, Nicholson AW. Mouse ribonuclease III. cDNA structure, expression analysis, and chromosomal location. BMC Genomics 2002, 3:26.
-
(2002)
BMC Genomics
, vol.3
, pp. 26
-
-
Fortin, K.R.1
Nicholson, R.H.2
Nicholson, A.W.3
-
74
-
-
33749984008
-
Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing
-
doi: 10.1093/nar/gkl458.
-
Yeom K-H, Lee Y, Han J, Suh MR, Kim VN. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res 2006, 34:4622-4629. doi: 10.1093/nar/gkl458.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 4622-4629
-
-
Yeom, K.-H.1
Lee, Y.2
Han, J.3
Suh, M.R.4
Kim, V.N.5
-
75
-
-
84873365736
-
Ensemble analysis of primary microRNA structure reveals an extensive capacity to deform near the Drosha cleavage site
-
doi: 10.1021/bi301452a.
-
Quarles KA, Sahu D, Havens MA, Forsyth ER, Wostenberg C, Hastings ML, Showalter SA. Ensemble analysis of primary microRNA structure reveals an extensive capacity to deform near the Drosha cleavage site. Biochemistry 2013, 52:795-807. doi: 10.1021/bi301452a.
-
(2013)
Biochemistry
, vol.52
, pp. 795-807
-
-
Quarles, K.A.1
Sahu, D.2
Havens, M.A.3
Forsyth, E.R.4
Wostenberg, C.5
Hastings, M.L.6
Showalter, S.A.7
-
76
-
-
34548480185
-
Crystal structure of human DGCR8 core
-
doi: 10.1038/nsmb1294.
-
Sohn SY, Bae WJ, Kim JJ, Yeom K-H, Kim VN, Cho Y. Crystal structure of human DGCR8 core. Nat Struct Mol Biol 2007, 14:847-853. doi: 10.1038/nsmb1294.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 847-853
-
-
Sohn, S.Y.1
Bae, W.J.2
Kim, J.J.3
Yeom, K.-H.4
Kim, V.N.5
Cho, Y.6
-
77
-
-
79952997312
-
Improved annotation of C. elegans microRNAs by deep sequencing reveals structures associated with processing by Drosha and Dicer
-
Warf MB, Johnson WE, Bass BL. Improved annotation of C. elegans microRNAs by deep sequencing reveals structures associated with processing by Drosha and Dicer. RNA 2011, 17:563-577.
-
(2011)
RNA
, vol.17
, pp. 563-577
-
-
Warf, M.B.1
Johnson, W.E.2
Bass, B.L.3
-
78
-
-
77954378538
-
MD simulations of the dsRBP DGCR8 reveal correlated motions that may aid pri-miRNA binding
-
doi: 10.1016/j.bpj.2010.04.010.
-
Wostenberg C, Noid WG, Showalter SA. MD simulations of the dsRBP DGCR8 reveal correlated motions that may aid pri-miRNA binding. Biophys J 2010, 99:248-256. doi: 10.1016/j.bpj.2010.04.010.
-
(2010)
Biophys J
, vol.99
, pp. 248-256
-
-
Wostenberg, C.1
Noid, W.G.2
Showalter, S.A.3
-
79
-
-
33846065567
-
Heme is involved in microRNA processing
-
doi: 10.1038/nsmb1182.
-
Faller M, Matsuanga M, Yin S, Loo JA, Guo F. Heme is involved in microRNA processing. Nat Struct Mol Biol 2007, 14:23-29. doi: 10.1038/nsmb1182.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 23-29
-
-
Faller, M.1
Matsuanga, M.2
Yin, S.3
Loo, J.A.4
Guo, F.5
-
80
-
-
77953965778
-
Structure of the dimerization domain of DiGeorge Critical Region 8
-
doi: 10.1002/pro.414.
-
Senturia R, Faller M, Yin SM, Loo JA, Cascio D, Sawaya MR, Hwang D, Clubb RT, Guo F. Structure of the dimerization domain of DiGeorge Critical Region 8. Protein Sci 2010, 19:1354-1365. doi: 10.1002/pro.414.
-
(2010)
Protein Sci
, vol.19
, pp. 1354-1365
-
-
Senturia, R.1
Faller, M.2
Yin, S.M.3
Loo, J.A.4
Cascio, D.5
Sawaya, M.R.6
Hwang, D.7
Clubb, R.T.8
Guo, F.9
-
81
-
-
78149316877
-
Noncanonical cytoplasmic processing of viral microRNAs
-
Shapiro JS, Varble A, Pham AM, Tenoever BR. Noncanonical cytoplasmic processing of viral microRNAs. RNA 2010, 16:2068-2074.
-
(2010)
RNA
, vol.16
, pp. 2068-2074
-
-
Shapiro, J.S.1
Varble, A.2
Pham, A.M.3
Tenoever, B.R.4
-
82
-
-
84862587403
-
Evidence for a cytoplasmic microprocessor of pri-miRNAs
-
Shapiro JS, Langlois RA, Pham AM, Tenoever BR. Evidence for a cytoplasmic microprocessor of pri-miRNAs. RNA 2012, 18:1338-1346.
-
(2012)
RNA
, vol.18
, pp. 1338-1346
-
-
Shapiro, J.S.1
Langlois, R.A.2
Pham, A.M.3
Tenoever, B.R.4
-
83
-
-
84879157009
-
Processing of virus-derived cytoplasmic primary-microRNAs
-
Shapiro JS. Processing of virus-derived cytoplasmic primary-microRNAs. Wiley Interdiscip Rev RNA 2013, 4:463-471.
-
(2013)
Wiley Interdiscip Rev RNA
, vol.4
, pp. 463-471
-
-
Shapiro, J.S.1
-
84
-
-
84864688599
-
DGCR8 HITS-CLIP reveals novel functions for the microprocessor
-
Macias S, Plass M, Stajuda A, Michlewski G, Eyras E, Cáceres JF. DGCR8 HITS-CLIP reveals novel functions for the microprocessor. Nat Struct Mol Biol 2012, 19:760-766.
-
(2012)
Nat Struct Mol Biol
, vol.19
, pp. 760-766
-
-
Macias, S.1
Plass, M.2
Stajuda, A.3
Michlewski, G.4
Eyras, E.5
Cáceres, J.F.6
-
85
-
-
3142613181
-
Single processing center models for human dicer and bacterial RNase III
-
Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W. Single processing center models for human dicer and bacterial RNase III. Cell 2004, 118:57-68.
-
(2004)
Cell
, vol.118
, pp. 57-68
-
-
Zhang, H.1
Kolb, F.A.2
Jaskiewicz, L.3
Westhof, E.4
Filipowicz, W.5
-
86
-
-
30844438338
-
Structural basis for double-stranded RNA processing by Dicer
-
doi: 10.1126/science.1121638.
-
MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA. Structural basis for double-stranded RNA processing by Dicer. Science 2006, 311:195-198. doi: 10.1126/science.1121638.
-
(2006)
Science
, vol.311
, pp. 195-198
-
-
MacRae, I.J.1
Zhou, K.2
Li, F.3
Repic, A.4
Brooks, A.N.5
Cande, W.Z.6
Adams, P.D.7
Doudna, J.A.8
-
87
-
-
84861318033
-
The molecular architecture of human dicer
-
doi: 10.1038/nsmb.2268.
-
Lau PW, Guiley KZ, De N, Potter CS, Carragher B, MacRae IJ. The molecular architecture of human dicer. Nat Struct Mol Biol 2012, 19:436-441. doi: 10.1038/nsmb.2268.
-
(2012)
Nat Struct Mol Biol
, vol.19
, pp. 436-441
-
-
Lau, P.W.1
Guiley, K.Z.2
De, N.3
Potter, C.S.4
Carragher, B.5
MacRae, I.J.6
-
88
-
-
79960185923
-
Dicer recognizes the 5' end of RNA for efficient and accurate processing
-
Park JE, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, Kim VN. Dicer recognizes the 5' end of RNA for efficient and accurate processing. Nature 2011, 475:201-205.
-
(2011)
Nature
, vol.475
, pp. 201-205
-
-
Park, J.E.1
Heo, I.2
Tian, Y.3
Simanshu, D.K.4
Chang, H.5
Jee, D.6
Patel, D.J.7
Kim, V.N.8
-
89
-
-
84869037267
-
The loop position of shRNAs and pre-miRNAs is critical for the accuracy of Dicer processing in vivo
-
Gu S, Jin L, Zhang Y, Huang Y, Zhang F, Valdmanis PN, Kay MA. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of Dicer processing in vivo. Cell 2012, 151:900-911.
-
(2012)
Cell
, vol.151
, pp. 900-911
-
-
Gu, S.1
Jin, L.2
Zhang, Y.3
Huang, Y.4
Zhang, F.5
Valdmanis, P.N.6
Kay, M.A.7
-
90
-
-
84865513822
-
Coordinated activities of human dicer domains in regulatory RNA processing
-
doi: 10.1016/j.jmb.2012.06.009.
-
Ma E, Zhou K, Kidwell MA, Doudna JA. Coordinated activities of human dicer domains in regulatory RNA processing. J Mol Biol 2012, 422:466-476. doi: 10.1016/j.jmb.2012.06.009.
-
(2012)
J Mol Biol
, vol.422
, pp. 466-476
-
-
Ma, E.1
Zhou, K.2
Kidwell, M.A.3
Doudna, J.A.4
-
91
-
-
84871284940
-
The role of human dicer-dsRBD in processing small regulatory RNAs
-
doi: 10.1371/journal.pone.0051829.
-
Wostenberg C, Lary JW, Sahu D, Acevedo R, Quarles KA, Cole JL, Showalter SA. The role of human dicer-dsRBD in processing small regulatory RNAs. PLoS One 2012, 7:e51829. doi: 10.1371/journal.pone.0051829.
-
(2012)
PLoS One
, vol.7
-
-
Wostenberg, C.1
Lary, J.W.2
Sahu, D.3
Acevedo, R.4
Quarles, K.A.5
Cole, J.L.6
Showalter, S.A.7
-
92
-
-
70349767012
-
Structure of the human dicer-TRBP complex by electron microscopy
-
doi: 10.1016/j.str.2009.08.013.
-
Lau PW, Potter CS, Carragher B, MacRae IJ. Structure of the human dicer-TRBP complex by electron microscopy. Structure 2009, 17:1326-1332. doi: 10.1016/j.str.2009.08.013.
-
(2009)
Structure
, vol.17
, pp. 1326-1332
-
-
Lau, P.W.1
Potter, C.S.2
Carragher, B.3
MacRae, I.J.4
-
93
-
-
79959872313
-
siRNA repositioning for guide strand selection by human dicer complexes
-
Noland CL, Ma E, Doudna JA. siRNA repositioning for guide strand selection by human dicer complexes. Mol Cell 2011, 43:110-121.
-
(2011)
Mol Cell
, vol.43
, pp. 110-121
-
-
Noland, C.L.1
Ma, E.2
Doudna, J.A.3
-
94
-
-
84867678226
-
TRBP alters human precursor microRNA processing in vitro
-
doi: 10.1261/rna.035501.112.
-
Lee HY, Doudna JA. TRBP alters human precursor microRNA processing in vitro. RNA 2012, 18:2012-2019. doi: 10.1261/rna.035501.112.
-
(2012)
RNA
, vol.18
, pp. 2012-2019
-
-
Lee, H.Y.1
Doudna, J.A.2
-
95
-
-
84868106469
-
Dicer partner proteins tune the length of mature miRNAs in flies and mammals
-
doi: 10.1016/j.cell.2012.09.027.
-
Fukunaga R, Han BW, Hung JH, Xu J, Weng Z, Zamore PD. Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 2012, 151:533-546. doi: 10.1016/j.cell.2012.09.027.
-
(2012)
Cell
, vol.151
, pp. 533-546
-
-
Fukunaga, R.1
Han, B.W.2
Hung, J.H.3
Xu, J.4
Weng, Z.5
Zamore, P.D.6
-
96
-
-
0037371743
-
Uridine insertion/deletion RNA editing in trypanosome mitochondria: a complex business
-
Simpson L, Sbicego S, Aphasizhev R. Uridine insertion/deletion RNA editing in trypanosome mitochondria: a complex business. RNA 2003, 9:265-276.
-
(2003)
RNA
, vol.9
, pp. 265-276
-
-
Simpson, L.1
Sbicego, S.2
Aphasizhev, R.3
-
97
-
-
28044439400
-
An essential RNase III insertion editing endonuclease in Trypanosoma brucei
-
doi: 10.1073/pnas.0506133102.
-
Carnes J, Trotter JR, Ernst NL, Steinberg A, Stuart K. An essential RNase III insertion editing endonuclease in Trypanosoma brucei. Proc Natl Acad Sci USA 2005, 102:16614-16619. doi: 10.1073/pnas.0506133102.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 16614-16619
-
-
Carnes, J.1
Trotter, J.R.2
Ernst, N.L.3
Steinberg, A.4
Stuart, K.5
-
98
-
-
37549054714
-
RNA editing in Trypanosoma brucei requires three different editosomes
-
doi: 10.1128/MCB.01374-07.
-
Carnes J, Trotter JR, Peltan A, Fleck M, Stuart K. RNA editing in Trypanosoma brucei requires three different editosomes. Mol Cell Biol 2008, 28:122-130. doi: 10.1128/MCB.01374-07.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 122-130
-
-
Carnes, J.1
Trotter, J.R.2
Peltan, A.3
Fleck, M.4
Stuart, K.5
-
99
-
-
46649094360
-
Determinants for association and guide RNA-directed endonuclease cleavage by purified RNA editing complexes from Trypanosoma brucei
-
doi: 10.1016/j.jmb.2008.05.003.
-
Hernandez A, Panigrahi A, Cifuentes-Rojas C, Sacharidou A, Stuart K, Cruz-Reyes J. Determinants for association and guide RNA-directed endonuclease cleavage by purified RNA editing complexes from Trypanosoma brucei. J Mol Biol 2008, 381:35-48. doi: 10.1016/j.jmb.2008.05.003.
-
(2008)
J Mol Biol
, vol.381
, pp. 35-48
-
-
Hernandez, A.1
Panigrahi, A.2
Cifuentes-Rojas, C.3
Sacharidou, A.4
Stuart, K.5
Cruz-Reyes, J.6
-
100
-
-
79957595769
-
Endonuclease associations with three distinct editosomes in Trypanosoma brucei
-
doi: 10.1074/jbc.M111.228965.
-
Carnes J, Soares CZ, Wickham C, Stuart K. Endonuclease associations with three distinct editosomes in Trypanosoma brucei. J Biol Chem 2011, 286:19320-19330. doi: 10.1074/jbc.M111.228965.
-
(2011)
J Biol Chem
, vol.286
, pp. 19320-19330
-
-
Carnes, J.1
Soares, C.Z.2
Wickham, C.3
Stuart, K.4
-
101
-
-
84866634612
-
Mutational analysis of Trypanosoma brucei editosome proteins KREPB4 and KREPB5 reveal domains critical for function
-
doi: 10.1261/rna.035048.112.
-
Carnes J, Schnaufer A, Mcdermott SM, Domingo G, Proff R, Steinberg AG, Kurtz I, Stuart K. Mutational analysis of Trypanosoma brucei editosome proteins KREPB4 and KREPB5 reveal domains critical for function. RNA 2012, 18:1897-1909. doi: 10.1261/rna.035048.112.
-
(2012)
RNA
, vol.18
, pp. 1897-1909
-
-
Carnes, J.1
Schnaufer, A.2
Mcdermott, S.M.3
Domingo, G.4
Proff, R.5
Steinberg, A.G.6
Kurtz, I.7
Stuart, K.8
-
102
-
-
84857198283
-
Modular recognition of nucleic acids by PUF, TALE and PPR proteins
-
doi: 10.1039/c2mb05392f.
-
Flipovska A, Rackham O. Modular recognition of nucleic acids by PUF, TALE and PPR proteins. Mol Biosyst. 2012, 8:699-708. doi: 10.1039/c2mb05392f.
-
(2012)
Mol Biosyst.
, vol.8
, pp. 699-708
-
-
Flipovska, A.1
Rackham, O.2
-
103
-
-
80053183723
-
Guide RNA biogenesis involves a novel RNase III family endoribonuclease in Trypanosoma brucei
-
doi: 10.1261/rna.2815911.
-
Madina BK, Kuppan G, Vashisht AA, Liang Y-H, Downey KM, Wohlschlegel JA, Ji X, Sze S-H, Sacchettini JC, Read LK, et al. Guide RNA biogenesis involves a novel RNase III family endoribonuclease in Trypanosoma brucei. RNA 2011, 17:1821-1830. doi: 10.1261/rna.2815911.
-
(2011)
RNA
, vol.17
, pp. 1821-1830
-
-
Madina, B.K.1
Kuppan, G.2
Vashisht, A.A.3
Liang, Y.-H.4
Downey, K.M.5
Wohlschlegel, J.A.6
Ji, X.7
Sze, S.-H.8
Sacchettini, J.C.9
Read, L.K.10
-
104
-
-
0031980568
-
Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III-the effect of dsRNA binding on gene expression
-
Dasgupta S, Fernandez L, Kameyama L, Inada T, Nakamura Y, Pappas A, Court DL. Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III-the effect of dsRNA binding on gene expression. Mol Microbiol 1998, 28:629-640.
-
(1998)
Mol Microbiol
, vol.28
, pp. 629-640
-
-
Dasgupta, S.1
Fernandez, L.2
Kameyama, L.3
Inada, T.4
Nakamura, Y.5
Pappas, A.6
Court, D.L.7
-
105
-
-
35348861922
-
A ribonuclease III domain protein functions in group II intron splicing in maize chloroplasts
-
doi: 10.1105/tpc.107.053736.
-
Watkins KP, Kroeger TS, Cooke AM, Williams-Carrier RE, Friso G, Belcher SE, van Wijk KJ, Barkan A. A ribonuclease III domain protein functions in group II intron splicing in maize chloroplasts. Plant Cell 2007, 19:2606-2623. doi: 10.1105/tpc.107.053736.
-
(2007)
Plant Cell
, vol.19
, pp. 2606-2623
-
-
Watkins, K.P.1
Kroeger, T.S.2
Cooke, A.M.3
Williams-Carrier, R.E.4
Friso, G.5
Belcher, S.E.6
van Wijk, K.J.7
Barkan, A.8
-
106
-
-
63149143882
-
A plant-specific RNA-binding domain revealed through analysis of chloroplast group II intron splicing
-
doi: 10.1073/pnas.0812503106.
-
Kroeger TYS, Watkins KP, Friso G, van Wijk KJ, Barkan A. A plant-specific RNA-binding domain revealed through analysis of chloroplast group II intron splicing. Proc Natl Acad Sci U S A 2009, 106:4537-4542. doi: 10.1073/pnas.0812503106.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 4537-4542
-
-
Kroeger, T.Y.S.1
Watkins, K.P.2
Friso, G.3
van Wijk, K.J.4
Barkan, A.5
-
107
-
-
77954711237
-
Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry, and hierarchical clustering
-
doi: 10.1074/mcp.M000038-MCP201.
-
Olinares PD, Ponnala L, van Wijk KJ. Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry, and hierarchical clustering. Mol Cell Proteomics 2010, 9:1594-1615. doi: 10.1074/mcp.M000038-MCP201.
-
(2010)
Mol Cell Proteomics
, vol.9
, pp. 1594-1615
-
-
Olinares, P.D.1
Ponnala, L.2
van Wijk, K.J.3
-
108
-
-
0034803919
-
Degradation of double-stranded RNA by mammalian pancreatic-type ribonucleases
-
Libonati M, Sorrentino M. Degradation of double-stranded RNA by mammalian pancreatic-type ribonucleases. Methods Enzymol 2001, 341:234-248.
-
(2001)
Methods Enzymol
, vol.341
, pp. 234-248
-
-
Libonati, M.1
Sorrentino, M.2
-
109
-
-
84890292339
-
The superfamily of vertebrate-secreted ribonucleases
-
Nicholson AW, ed. Berlin-Heidelberg: Springer-Verlag;, doi: 10.1007/978-3-642-21078-5_1.
-
D'Alessio G. The superfamily of vertebrate-secreted ribonucleases. Nicholson AW, ed. Ribonucleases. Nucleic Acids and Molecular Biology 26. Berlin-Heidelberg: Springer-Verlag; 2011, 1-34. doi: 10.1007/978-3-642-21078-5_1.
-
(2011)
Ribonucleases. Nucleic Acids and Molecular Biology 26
, pp. 1-34
-
-
D'Alessio, G.1
-
110
-
-
84864383746
-
Vertebrate secretory (RNase A) ribonucleases and host defense
-
Nicholson AW, ed. Berlin-Heidelberg: Springer-Verlag;, doi: 10.1007/978-3-642-21078-5_2.
-
Rosenberg HF. Vertebrate secretory (RNase A) ribonucleases and host defense. Nicholson AW, ed. Ribonucleases. Nucleic Acids and Molecular Biology 26. Berlin-Heidelberg: Springer-Verlag; 2011, 36-53. doi: 10.1007/978-3-642-21078-5_2.
-
(2011)
Ribonucleases. Nucleic Acids and Molecular Biology 26
, pp. 36-53
-
-
Rosenberg, H.F.1
-
111
-
-
79952303123
-
Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3' to 5' exonuclease activity essential for immune suppression
-
doi: 10.1073/pnas.1016404108.
-
Hastie KM, Kimberlin CR, Zandonatti MA, MacRae IJ, Saphire EO. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3' to 5' exonuclease activity essential for immune suppression. Proc Natl Acad Sci U S A 2011, 108:2396-2401. doi: 10.1073/pnas.1016404108.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 2396-2401
-
-
Hastie, K.M.1
Kimberlin, C.R.2
Zandonatti, M.A.3
MacRae, I.J.4
Saphire, E.O.5
-
112
-
-
84865456858
-
Structural basis for the dsRNA specificity of the Lassa virus NP exonuclease
-
doi: 10.1371/journal.pone.0044211.
-
Hastie KM, King LB, Zandonatti MA, Saphire EO. Structural basis for the dsRNA specificity of the Lassa virus NP exonuclease. PLoS One 2012, 7:e44211. doi: 10.1371/journal.pone.0044211.
-
(2012)
PLoS One
, vol.7
-
-
Hastie, K.M.1
King, L.B.2
Zandonatti, M.A.3
Saphire, E.O.4
-
113
-
-
84859481301
-
Hiding the evidence: two strategies for innate immune evasion by hemorrhagic fever viruses
-
Hastie KM, Bale S, Kimberlin CR, Saphire EO. Hiding the evidence: two strategies for innate immune evasion by hemorrhagic fever viruses. Curr Opin Virol 2012, 2:151-156.
-
(2012)
Curr Opin Virol
, vol.2
, pp. 151-156
-
-
Hastie, K.M.1
Bale, S.2
Kimberlin, C.R.3
Saphire, E.O.4
-
114
-
-
0037082426
-
RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing
-
Tang TH, Rozhdestvensky TS, d'Orval BC, Bortolin ML, Huber H, Charpentier B, Branlant C, Bachellerie JP, Brosius J, Hüttenhofer A. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing. Nucleic Acids Res 2002, 30:921-930.
-
(2002)
Nucleic Acids Res
, vol.30
, pp. 921-930
-
-
Tang, T.H.1
Rozhdestvensky, T.S.2
d'Orval, B.C.3
Bortolin, M.L.4
Huber, H.5
Charpentier, B.6
Branlant, C.7
Bachellerie, J.P.8
Brosius, J.9
Hüttenhofer, A.10
-
115
-
-
79960206790
-
Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules
-
doi: 10.1093/nar/gkr090.
-
Babiskin AH, Smolke CD. Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules. Nucleic Acids Res 2011, 39:5299-5311. doi: 10.1093/nar/gkr090.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 5299-5311
-
-
Babiskin, A.H.1
Smolke, C.D.2
-
116
-
-
80455156003
-
Synthetic RNA modules for fine-tuning gene expression levels in yeast by modulating RNase III activity
-
doi: 10.1093/nar/gkr445.
-
Babiskin AH, Smolke CD. Synthetic RNA modules for fine-tuning gene expression levels in yeast by modulating RNase III activity. Nucleic Acids Res 2011, 39:8651-8664. doi: 10.1093/nar/gkr445.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 8651-8664
-
-
Babiskin, A.H.1
Smolke, C.D.2
-
117
-
-
84883267267
-
Effects of nanoscale confinement on the functionality of nucleic acids: implications for nanomedicine
-
Castronovo M, Stopar A, Coral L, Redhu SK, Vidonis M, Kumar V, Del Ben F, Grassi M, Nicholson AW. Effects of nanoscale confinement on the functionality of nucleic acids: implications for nanomedicine. Curr Med Chem 2013, 20:3539-3557.
-
(2013)
Curr Med Chem
, vol.20
, pp. 3539-3557
-
-
Castronovo, M.1
Stopar, A.2
Coral, L.3
Redhu, S.K.4
Vidonis, M.5
Kumar, V.6
Del Ben, F.7
Grassi, M.8
Nicholson, A.W.9
-
118
-
-
84884172138
-
-
Redhu SK, Castronovo M, Nicholson AW. Digital imprinting of RNA recognition and processing on a self-assembled nucleic acid matrix. Sci Rep, doi: 10.1038/srep02550.
-
Redhu SK, Castronovo M, Nicholson AW. Digital imprinting of RNA recognition and processing on a self-assembled nucleic acid matrix. Sci Rep 2013, 3:2550. doi: 10.1038/srep02550.
-
(2013)
, vol.3
, pp. 2550
-
-
|