메뉴 건너뛰기




Volumn 7, Issue , 2013, Pages

ENNET: Inferring large gene regulatory networks from expression data using gradient boosting

Author keywords

Boosting; Ensemble learning; Gene regulatory networks; Network inference

Indexed keywords

TRANSCRIPTOME;

EID: 84886916597     PISSN: None     EISSN: 17520509     Source Type: Journal    
DOI: 10.1186/1752-0509-7-106     Document Type: Article
Times cited : (35)

References (55)
  • 1
    • 0036020655 scopus 로고    scopus 로고
    • Genetic network modeling
    • 10.1517/14622416.3.4.507, 12164774
    • Someren E, Wessels L, Backer E, Reinders M. Genetic network modeling. Pharmacogenomics 2002, 3(4):507-525. 10.1517/14622416.3.4.507, 12164774.
    • (2002) Pharmacogenomics , vol.3 , Issue.4 , pp. 507-525
    • Someren, E.1    Wessels, L.2    Backer, E.3    Reinders, M.4
  • 2
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • 10.1073/pnas.95.25.14863, 24541, 9843981
    • Eisen M, Spellman P, Brown P, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 1998, 95(25):14863. 10.1073/pnas.95.25.14863, 24541, 9843981.
    • (1998) Proc Natl Acad Sci , vol.95 , Issue.25 , pp. 14863
    • Eisen, M.1    Spellman, P.2    Brown, P.3    Botstein, D.4
  • 3
    • 14844286390 scopus 로고    scopus 로고
    • Reverse-engineering transcription control networks
    • 10.1016/j.plrev.2005.01.001, 20416858
    • Gardner T, Faith J. Reverse-engineering transcription control networks. Phys Life Rev 2005, 2:65-88. 10.1016/j.plrev.2005.01.001, 20416858.
    • (2005) Phys Life Rev , vol.2 , pp. 65-88
    • Gardner, T.1    Faith, J.2
  • 4
    • 0001789769 scopus 로고    scopus 로고
    • Modeling gene expression with differential equations
    • Singapore: World Scientific Press
    • Chen T, He H, Church G, et al. Modeling gene expression with differential equations. Pacific Symposium on Biocomputing, Volume 4 1999, 4-4. Singapore: World Scientific Press.
    • (1999) Pacific Symposium on Biocomputing, Volume 4 , pp. 4-4
    • Chen, T.1    He, H.2    Church, G.3
  • 5
    • 0032612220 scopus 로고    scopus 로고
    • Linear modeling of mRNA expression levels during CNS development and injury
    • Singapore: World Scientific Press, Somogyi R
    • D'haeseleer P, Wen X, Fuhrman S, et al. Somogyi R Linear modeling of mRNA expression levels during CNS development and injury,. Pacific Symposium on Biocomputing, Volume 4 1999, 41-52. Singapore: World Scientific Press, Somogyi R.
    • (1999) Pacific Symposium on Biocomputing, Volume 4 , pp. 41-52
    • D'haeseleer, P.1    Wen, X.2    Fuhrman, S.3
  • 6
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • 10.1126/science.1081900, 12843395
    • Gardner TS, di Bernardo D, Lorenz D, Collins JJ. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301(5629):102-105. 10.1126/science.1081900, 12843395.
    • (2003) Science , vol.301 , Issue.5629 , pp. 102-105
    • Gardner, T.S.1    di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 7
    • 77749264188 scopus 로고    scopus 로고
    • Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data
    • 10.1371/journal.pone.0008121, 2811182, 20126643
    • Yip K, Alexander R, Yan K, Gerstein M. Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data. PLoS One 2010, 5:e8121. 10.1371/journal.pone.0008121, 2811182, 20126643.
    • (2010) PLoS One , vol.5
    • Yip, K.1    Alexander, R.2    Yan, K.3    Gerstein, M.4
  • 8
    • 84876207916 scopus 로고    scopus 로고
    • Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks
    • 10.1093/bioinformatics/btt099, 3624811, 23525069
    • Greenfield A, Hafemeister C, Bonneau R. Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks. Bioinformatics 2013, 29(8):1060-1067. 10.1093/bioinformatics/btt099, 3624811, 23525069.
    • (2013) Bioinformatics , vol.29 , Issue.8 , pp. 1060-1067
    • Greenfield, A.1    Hafemeister, C.2    Bonneau, R.3
  • 9
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol 2000, 7(3-4):601-620.
    • (2000) J Comput Biol , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 10
    • 4143058645 scopus 로고    scopus 로고
    • Gene networks inference using dynamic Bayesian networks
    • 10.1093/bioinformatics/btg1071, 14534183
    • Perrin BE, Ralaivola L, Mazurie A, Bottani S, Mallet J, d'Alche Buc F. Gene networks inference using dynamic Bayesian networks. Bioinformatics 2003, 19(suppl 2):ii138-ii148. 10.1093/bioinformatics/btg1071, 14534183.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL 2
    • Perrin, B.E.1    Ralaivola, L.2    Mazurie, A.3    Bottani, S.4    Mallet, J.5    d'Alche Buc, F.6
  • 11
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian, network inference for generating causal networks from observational biological data
    • 10.1093/bioinformatics/bth448, 15284094
    • Yu J, Smith V, Wang P, Hartemink A, Jarvis E. Advances to Bayesian, network inference for generating causal networks from observational biological data. Bioinformatics 2004, 20(18):3594-3603. 10.1093/bioinformatics/bth448, 15284094.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3594-3603
    • Yu, J.1    Smith, V.2    Wang, P.3    Hartemink, A.4    Jarvis, E.5
  • 12
    • 0842309161 scopus 로고    scopus 로고
    • Discovering molecular pathways from protein interaction and gene expression data
    • 10.1093/bioinformatics/btg1037, 12855469
    • Segal E, Wang H, Koller D. Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 2003, 19(suppl 1):i264-i272. 10.1093/bioinformatics/btg1037, 12855469.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL 1
    • Segal, E.1    Wang, H.2    Koller, D.3
  • 14
    • 84866456093 scopus 로고    scopus 로고
    • Context-specific transcriptional regulatory network inference from global gene expression maps using double two-way t-tests
    • 10.1093/bioinformatics/bts434, 22962443
    • Qi J, Michoel T. Context-specific transcriptional regulatory network inference from global gene expression maps using double two-way t-tests. Bioinformatics 2012, 28(18):2325-2332. 10.1093/bioinformatics/bts434, 22962443.
    • (2012) Bioinformatics , vol.28 , Issue.18 , pp. 2325-2332
    • Qi, J.1    Michoel, T.2
  • 17
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements
    • Singapore: World Scientific Press
    • Butte A, Kohane I. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pacific Symposium on Biocomputing, Volume 5 2000, 418-429. Singapore: World Scientific Press.
    • (2000) Pacific Symposium on Biocomputing, Volume 5 , pp. 418-429
    • Butte, A.1    Kohane, I.2
  • 18
    • 67449095889 scopus 로고    scopus 로고
    • Computational methods for discovering gene networks from expression data
    • Lee W, Tzou W. Computational methods for discovering gene networks from expression data. Brief Bioinform 2009, 10(4):408-423.
    • (2009) Brief Bioinform , vol.10 , Issue.4 , pp. 408-423
    • Lee, W.1    Tzou, W.2
  • 19
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks-a review
    • Markowetz F, Spang R. Inferring cellular networks-a review. BMC Bioinformatics 2007, 8(Suppl 6):S5.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL 6
    • Markowetz, F.1    Spang, R.2
  • 20
    • 77957141016 scopus 로고    scopus 로고
    • Inferring the conservative causal core of gene regulatory networks
    • 10.1186/1752-0509-4-132, 2955605, 20920161
    • Altay G, Emmert-Streib F. Inferring the conservative causal core of gene regulatory networks. BMC Syst Biol 2010, 4:132. 10.1186/1752-0509-4-132, 2955605, 20920161.
    • (2010) BMC Syst Biol , vol.4 , pp. 132
    • Altay, G.1    Emmert-Streib, F.2
  • 21
    • 84861168271 scopus 로고    scopus 로고
    • Inferring gene regulatory networks by ANOVA
    • 10.1093/bioinformatics/bts143, 22467911
    • Küffner R, Petri T, Tavakkolkhah P, Windhager L, Zimmer R. Inferring gene regulatory networks by ANOVA. Bioinformatics 2012, 28(10):1376-1382. 10.1093/bioinformatics/bts143, 22467911.
    • (2012) Bioinformatics , vol.28 , Issue.10 , pp. 1376-1382
    • Küffner, R.1    Petri, T.2    Tavakkolkhah, P.3    Windhager, L.4    Zimmer, R.5
  • 23
    • 33750353888 scopus 로고    scopus 로고
    • Reverse engineering cellular networks
    • 10.1038/nprot.2006.106, 17406294
    • Margolin A, Wang K, Lim W, Kustagi M, Nemenman I, Califano A. Reverse engineering cellular networks. Nat Protoc 2006, 1(2):662-671. 10.1038/nprot.2006.106, 17406294.
    • (2006) Nat Protoc , vol.1 , Issue.2 , pp. 662-671
    • Margolin, A.1    Wang, K.2    Lim, W.3    Kustagi, M.4    Nemenman, I.5    Califano, A.6
  • 24
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
    • 10.1371/journal.pbio.0050008, 1764438, 17214507
    • Faith J, Hayete B, Thaden J, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins J, Gardner T. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 2007, 5:e8. 10.1371/journal.pbio.0050008, 1764438, 17214507.
    • (2007) PLoS Biol , vol.5
    • Faith, J.1    Hayete, B.2    Thaden, J.3    Mogno, I.4    Wierzbowski, J.5    Cottarel, G.6    Kasif, S.7    Collins, J.8    Gardner, T.9
  • 25
    • 84871752758 scopus 로고    scopus 로고
    • NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference
    • 10.1093/bioinformatics/bts619, 23080116
    • Zhang X, Liu K, Liu ZP, Duval B, Richer JM, Zhao XM, Hao JK, Chen L. NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference. Bioinformatics 2013, 29:106-113. 10.1093/bioinformatics/bts619, 23080116.
    • (2013) Bioinformatics , vol.29 , pp. 106-113
    • Zhang, X.1    Liu, K.2    Liu, Z.P.3    Duval, B.4    Richer, J.M.5    Zhao, X.M.6    Hao, J.K.7    Chen, L.8
  • 27
    • 84960463485 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Washington: IEEE
    • Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. Computational Systems Bioinformatics Conference CSB2003 2003, 523-528. Washington: IEEE.
    • (2003) Computational Systems Bioinformatics Conference CSB2003 , pp. 523-528
    • Ding, C.1    Peng, H.2
  • 28
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • 10.1371/journal.pone.0012776, 2946910, 20927193
    • Irrthum A, Wehenkel L, Geurts P, et al. Inferring regulatory networks from expression data using tree-based methods. PLoS One 2010, 5(9):e12776. 10.1371/journal.pone.0012776, 2946910, 20927193.
    • (2010) PLoS One , vol.5 , Issue.9
    • Irrthum, A.1    Wehenkel, L.2    Geurts, P.3
  • 29
    • 84869882656 scopus 로고    scopus 로고
    • TIGRESS: trustful inference of gene regulation using stability selection
    • 10.1186/1752-0509-6-145, 3598250, 23173819
    • Haury AC, Mordelet F, Vera-Licona P, Vert JP. TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst Biol 2012, 6:145. 10.1186/1752-0509-6-145, 3598250, 23173819.
    • (2012) BMC Syst Biol , vol.6 , pp. 145
    • Haury, A.C.1    Mordelet, F.2    Vera-Licona, P.3    Vert, J.P.4
  • 31
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 1997, 55:119-139.
    • (1997) J Comput Syst Sci , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 33
    • 84878285220 scopus 로고    scopus 로고
    • OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks
    • 10.1093/bioinformatics/btt167, 3661057, 23574736
    • Lim N, Şenbabaoǧlu Y, Michailidis G, d'Alché Buc F. OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks. Bioinformatics 2013, 29(11):1416-1423. 10.1093/bioinformatics/btt167, 3661057, 23574736.
    • (2013) Bioinformatics , vol.29 , Issue.11 , pp. 1416-1423
    • Lim, N.1    Şenbabaoǧlu, Y.2    Michailidis, G.3    d'Alché Buc, F.4
  • 34
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    • 10.1093/bioinformatics/19.2.185, 12538238
    • Bolstad B, Irizarry R, Åstrand M S. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19(2):185-193. 10.1093/bioinformatics/19.2.185, 12538238.
    • (2003) Bioinformatics , vol.19 , Issue.2 , pp. 185-193
    • Bolstad, B.1    Irizarry, R.2    Åstrand, M.S.3
  • 37
    • 68949154557 scopus 로고    scopus 로고
    • Feature selection with ensembles, artificial variables, and redundancy elimination
    • Tuv E, Borisov A, Runger G, Torkkola K. Feature selection with ensembles, artificial variables, and redundancy elimination. J Mach Learn Res 2009, 10:1341-1366.
    • (2009) J Mach Learn Res , vol.10 , pp. 1341-1366
    • Tuv, E.1    Borisov, A.2    Runger, G.3    Torkkola, K.4
  • 38
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat 2001, 29(5):1189-1232.
    • (2001) Ann Stat , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 39
    • 79961200389 scopus 로고    scopus 로고
    • GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods
    • 10.1093/bioinformatics/btr373, 21697125
    • Schaffter T, Marbach D, Floreano D. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 2011, 27(16):2263-2270. 10.1093/bioinformatics/btr373, 21697125.
    • (2011) Bioinformatics , vol.27 , Issue.16 , pp. 2263-2270
    • Schaffter, T.1    Marbach, D.2    Floreano, D.3
  • 41
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • 10.1093/bib/4.3.228, 14582517
    • Kim S, Imoto S, Miyano S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform 2003, 4(3):228-235. 10.1093/bib/4.3.228, 14582517.
    • (2003) Brief Bioinform , vol.4 , Issue.3 , pp. 228-235
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 42
    • 63849112875 scopus 로고    scopus 로고
    • A gene network simulator to assess reverse engineering algorithms
    • 10.1111/j.1749-6632.2008.03756.x, 19348638
    • Di Camillo B, Toffolo G, Cobelli C. A gene network simulator to assess reverse engineering algorithms. Ann N Y Acad Sci 2009, 1158:125-142. 10.1111/j.1749-6632.2008.03756.x, 19348638.
    • (2009) Ann N Y Acad Sci , vol.1158 , pp. 125-142
    • Di Camillo, B.1    Toffolo, G.2    Cobelli, C.3
  • 43
    • 4644301730 scopus 로고    scopus 로고
    • A benchmark for fethods in reverse engineering and model discrimination: problem formulation and solutions
    • 10.1101/gr.1226004, 515324, 15342560
    • Kremling A F, Gadkar K, Doyle F, Sauter T, Bullinger E, Allgöwer F, Gilles E. A benchmark for fethods in reverse engineering and model discrimination: problem formulation and solutions. Genome Res 2004, 14(9):1773-1785. 10.1101/gr.1226004, 515324, 15342560.
    • (2004) Genome Res , vol.14 , Issue.9 , pp. 1773-1785
    • Kremling, A.F.1    Gadkar, K.2    Doyle, F.3    Sauter, T.4    Bullinger, E.5    Allgöwer, F.6    Gilles, E.7
  • 44
    • 2942694772 scopus 로고    scopus 로고
    • Artificial gene networks for objective comparison of analysis algorithms
    • 10.1093/bioinformatics/btg1069, 14534181
    • Mendes P, Sha W, Ye K. Artificial gene networks for objective comparison of analysis algorithms. Bioinformatics 2003, 19(suppl 2):ii122-ii129. 10.1093/bioinformatics/btg1069, 14534181.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL 2
    • Mendes, P.1    Sha, W.2    Ye, K.3
  • 45
    • 33144486498 scopus 로고    scopus 로고
    • SynTReN a generator of synthetic gene expression data for design and analysis of structure learning algorithms
    • 10.1186/1471-2105-7-43, 1373604, 16438721
    • Van den Bulcke T, Van Leemput K, Naudts B, Van Remortel P, Ma H, Verschoren A, De Moor B, Marchal K. SynTReN a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinformatics 2006, 7:43. 10.1186/1471-2105-7-43, 1373604, 16438721.
    • (2006) BMC Bioinformatics , vol.7 , pp. 43
    • Van Den Bulcke, T.1    Van Leemput, K.2    Naudts, B.3    Van Remortel, P.4    Ma, H.5    Verschoren, A.6    De Moor, B.7    Marchal, K.8
  • 46
    • 0037199968 scopus 로고    scopus 로고
    • Hierarchical organization of modularity in metabolic networks
    • 10.1126/science.1073374, 12202830
    • Ravasz E, Somera A, Mongru D, Oltvai Z, Barabási A. Hierarchical organization of modularity in metabolic networks. Science 2002, 297(5586):1551-1555. 10.1126/science.1073374, 12202830.
    • (2002) Science , vol.297 , Issue.5586 , pp. 1551-1555
    • Ravasz, E.1    Somera, A.2    Mongru, D.3    Oltvai, Z.4    Barabási, A.5
  • 47
    • 0036578795 scopus 로고    scopus 로고
    • Network motifs in the transcriptional regulation network of Escherichia coli
    • 10.1038/ng881, 11967538
    • Shen-Orr S, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 2002, 31:64-68. 10.1038/ng881, 11967538.
    • (2002) Nat Genet , vol.31 , pp. 64-68
    • Shen-Orr, S.1    Milo, R.2    Mangan, S.3    Alon, U.4
  • 48
    • 65449134730 scopus 로고    scopus 로고
    • GeNGe: systematic generation of gene regulatory networks
    • 10.1093/bioinformatics/btp115, 2672627, 19251773
    • Hache H, Wierling C, Lehrach H, Herwig R. GeNGe: systematic generation of gene regulatory networks. Bioinformatics 2009, 25(9):1205-1207. 10.1093/bioinformatics/btp115, 2672627, 19251773.
    • (2009) Bioinformatics , vol.25 , Issue.9 , pp. 1205-1207
    • Hache, H.1    Wierling, C.2    Lehrach, H.3    Herwig, R.4
  • 49
    • 43349102320 scopus 로고    scopus 로고
    • A system for generating transcription regulatory networks with combinatorial control of transcription
    • 10.1093/bioinformatics/btn126, 2373921, 18400774
    • Roy S, Werner-Washburne M, Lane T. A system for generating transcription regulatory networks with combinatorial control of transcription. Bioinformatics 2008, 24(10):1318-1320. 10.1093/bioinformatics/btn126, 2373921, 18400774.
    • (2008) Bioinformatics , vol.24 , Issue.10 , pp. 1318-1320
    • Roy, S.1    Werner-Washburne, M.2    Lane, T.3
  • 50
    • 62549091023 scopus 로고    scopus 로고
    • Benchmarking regulatory network reconstruction with GRENDEL
    • 10.1093/bioinformatics/btp068, 2732301, 19188190
    • Haynes B, Brent M. Benchmarking regulatory network reconstruction with GRENDEL. Bioinformatics 2009, 25(6):801-807. 10.1093/bioinformatics/btp068, 2732301, 19188190.
    • (2009) Bioinformatics , vol.25 , Issue.6 , pp. 801-807
    • Haynes, B.1    Brent, M.2
  • 51
    • 13444260761 scopus 로고    scopus 로고
    • Statistical analysis of MPSS, measurements: application to the study of LPS-activated macrophage gene expression
    • 10.1073/pnas.0406555102, 547838, 15668391
    • Stolovitzky G, Kundaje A, Held G, Duggar K, Haudenschild C, Zhou D, Vasicek T, Smith K, Aderem A, Roach J. Statistical analysis of MPSS, measurements: application to the study of LPS-activated macrophage gene expression. Proc Natl Acad Sci USA 2005, 102(5):1402-1407. 10.1073/pnas.0406555102, 547838, 15668391.
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.5 , pp. 1402-1407
    • Stolovitzky, G.1    Kundaje, A.2    Held, G.3    Duggar, K.4    Haudenschild, C.5    Zhou, D.6    Vasicek, T.7    Smith, K.8    Aderem, A.9    Roach, J.10
  • 52
    • 59949086432 scopus 로고    scopus 로고
    • Minet: AR/Bioconductor package for inferring large transcriptional networks using mutual information
    • 10.1186/1471-2105-9-461, 2630331, 18959772
    • Meyer PE, Lafitte F, Bontempi G. Minet: AR/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics 2008, 9:461. 10.1186/1471-2105-9-461, 2630331, 18959772.
    • (2008) BMC Bioinformatics , vol.9 , pp. 461
    • Meyer, P.E.1    Lafitte, F.2    Bontempi, G.3
  • 53
    • 77950910419 scopus 로고    scopus 로고
    • Revealing strengths and weaknesses of methods for gene network inference
    • 10.1073/pnas.0913357107, 2851985, 20308593
    • Marbach D, Prill R, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G. Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci 2010, 107(14):6286-6291. 10.1073/pnas.0913357107, 2851985, 20308593.
    • (2010) Proc Natl Acad Sci , vol.107 , Issue.14 , pp. 6286-6291
    • Marbach, D.1    Prill, R.2    Schaffter, T.3    Mattiussi, C.4    Floreano, D.5    Stolovitzky, G.6
  • 54
    • 59649110273 scopus 로고    scopus 로고
    • Generating realistic in silico gene networks for performance assessment of reverse engineering methods
    • 10.1089/cmb.2008.09TT, 19183003
    • Marbach D, Schaffter T, Mattiussi C, Floreano D. Generating realistic in silico gene networks for performance assessment of reverse engineering methods. J Comput Biol 2009, 16(2):229-239. 10.1089/cmb.2008.09TT, 19183003.
    • (2009) J Comput Biol , vol.16 , Issue.2 , pp. 229-239
    • Marbach, D.1    Schaffter, T.2    Mattiussi, C.3    Floreano, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.