메뉴 건너뛰기




Volumn , Issue , 2012, Pages 434-441

ADANET: Inferring gene regulatory networks using ensemble classifiers

Author keywords

Bioinformatics; Ensemble classifiers; Gene regulatory network; Network inference

Indexed keywords

ACTIVE FIELD; BINARY CLASSIFICATION; CELL PHYSIOLOGY; DISCRIMINATIVE MODELS; E. COLI; ENSEMBLE CLASSIFIERS; EXPRESSION DATA; EXPRESSION PROFILE; GENE REGULATORY NETWORKS; HIGH-THROUGHPUT TECHNOLOGIES; MODEL DEPENDENCIES; NETWORK INFERENCE; OBSERVATIONAL DATA; PREDICTION PRECISION; REGULATED GENES; REGULATORY INTERACTIONS; REGULATORY NETWORK;

EID: 84869390828     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2382936.2382992     Document Type: Conference Paper
Times cited : (9)

References (34)
  • 1
    • 77957141016 scopus 로고    scopus 로고
    • Inferring the conservative causal core of gene regulatory networks
    • G. Altay and F. Emmert-Streib. Inferring the conservative causal core of gene regulatory networks. BMC Systems Biology, 4(1):132, 2010.
    • (2010) BMC Systems Biology , vol.4 , Issue.1 , pp. 132
    • Altay, G.1    Emmert-Streib, F.2
  • 2
    • 79959327654 scopus 로고    scopus 로고
    • Structural influence of gene networks on their inference: Analysis of C3NET
    • G. Altay and F. Emmert-Streib. Structural influence of gene networks on their inference: analysis of C3NET. Biology Direct, 6(1):31, 2011.
    • (2011) Biology Direct , vol.6 , Issue.1 , pp. 31
    • Altay, G.1    Emmert-Streib, F.2
  • 4
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • L. Breiman. Prediction Games and Arcing Algorithms. Neural Computation, 11(7):1493-1517, 1999.
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 5
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements
    • A. Butte and I. Kohane. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. In Pacific Symposium on Biocomputing, volume 5, pages 418-429, 2000.
    • (2000) Pacific Symposium on Biocomputing , vol.5 , pp. 418-429
    • Butte, A.1    Kohane, I.2
  • 8
    • 38549134505 scopus 로고    scopus 로고
    • Many Microbe Microarrays Database: Uniformly normalized Affymetrix compendia with structured experimental metadata
    • J. Faith, M. Driscoll, V. Fusaro, E. Cosgrove, B. Hayete, F. Juhn, S. Schneider, and T. Gardner. Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata. Nucleic Acids Research, 36(suppl 1):D866-D870, 2008.
    • (2008) Nucleic Acids Research , vol.36 , Issue.SUPPL. 1
    • Faith, J.1    Driscoll, M.2    Fusaro, V.3    Cosgrove, E.4    Hayete, B.5    Juhn, F.6    Schneider, S.7    Gardner, T.8
  • 9
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
    • J. Faith, B. Hayete, J. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J. Collins, and T. Gardner. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology, 5(1):e8, 2007.
    • (2007) PLoS Biology , vol.5 , Issue.1
    • Faith, J.1    Hayete, B.2    Thaden, J.3    Mogno, I.4    Wierzbowski, J.5    Cottarel, G.6    Kasif, S.7    Collins, J.8    Gardner, T.9
  • 10
    • 85043515682 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Y. Freund. Boosting a Weak Learning Algorithm by Majority. In Computational Learning Theory, pages 202-216, 1990.
    • (1990) Computational Learning Theory , pp. 202-216
    • Freund, Y.1
  • 14
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. E. Schapire. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 15
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28:337-407, 2000.
    • (2000) Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 16
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • N. Friedman. Inferring cellular networks using probabilistic graphical models. Science's STKE, 303(5659):799, 2004.
    • (2004) Science's STKE , vol.303 , Issue.5659 , pp. 799
    • Friedman, N.1
  • 19
    • 14844286390 scopus 로고    scopus 로고
    • Reverse-engineering transcription control networks
    • T. Gardner and J. Faith. Reverse-engineering transcription control networks. Physics of Life Reviews, 2(1):65-88, 2005.
    • (2005) Physics of Life Reviews , vol.2 , Issue.1 , pp. 65-88
    • Gardner, T.1    Faith, J.2
  • 21
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • A. Irrthum, L. Wehenkel, P. Geurts, et al. Inferring regulatory networks from expression data using tree-based methods. PLoS One, 5(9):e12776, 2010.
    • (2010) PLoS One , vol.5 , Issue.9
    • Irrthum, A.1    Wehenkel, L.2    Geurts, P.3
  • 22
    • 67449095889 scopus 로고    scopus 로고
    • Computational methods for discovering gene networks from expression data
    • W. Lee and W. Tzou. Computational methods for discovering gene networks from expression data. Briefings in Bioinformatics, 10(4):408-423, 2009.
    • (2009) Briefings in Bioinformatics , vol.10 , Issue.4 , pp. 408-423
    • Lee, W.1    Tzou, W.2
  • 23
  • 25
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks-a review
    • F. Markowetz and R. Spang. Inferring cellular networks-a review. BMC Bioinformatics, 8(Suppl 6):S5, 2007.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 6
    • Markowetz, F.1    Spang, R.2
  • 27
    • 59949086432 scopus 로고    scopus 로고
    • MINET: An open source R/Bioconductor Package for Mutual Information based Network Inference
    • P. E. Meyer, F. Lafitte, and G. Bontempi. MINET: An open source R/Bioconductor Package for Mutual Information based Network Inference. BMC Bioinformatics, 9, 2008.
    • (2008) BMC Bioinformatics , vol.9
    • Meyer, P.E.1    Lafitte, F.2    Bontempi, G.3
  • 29
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire. The Strength of Weak Learnability. Machine Learning, 5:197-227, 1990.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 30
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. E. Schapire and Y. Singer. Improved Boosting Algorithms Using Confidence-rated Predictions. Machine Learning, 37(3):297-336, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 31
    • 0842309161 scopus 로고    scopus 로고
    • Discovering molecular pathways from protein interaction and gene expression data
    • E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics, 19(suppl 1):i264-i272, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 1
    • Segal, E.1    Wang, H.2    Koller, D.3
  • 34
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • J. Yu, V. Smith, P. Wang, A. Hartemink, and E. Jarvis. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 20(18):3594-3603, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3594-3603
    • Yu, J.1    Smith, V.2    Wang, P.3    Hartemink, A.4    Jarvis, E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.