메뉴 건너뛰기




Volumn 105, Issue 489, 2010, Pages 401-414

Weighted distance weighted discrimination and its asymptotic properties

Author keywords

Fisher consistency; High dimensional; Linear discrimination; Low sample size data; Nonstandard asymptotics; Unbalanced data

Indexed keywords


EID: 77952561415     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1198/jasa.2010.tm08487     Document Type: Article
Times cited : (94)

References (29)
  • 1
    • 77249090732 scopus 로고    scopus 로고
    • The Maximal Data Piling Direction for Discrimination
    • [406]
    • Ahn, J., and Marron, J. S. (2010), "The Maximal Data Piling Direction for Discrimination," Biometrika, 97, 254-259. [406]
    • (2010) Biometrika , vol.97 , pp. 254-259
    • Ahn, J.1    Marron, J.S.2
  • 2
    • 34548536094 scopus 로고    scopus 로고
    • The High-Dimension, Low-Sample-Size Geometric Representation Holds Under Mild Conditions
    • [402,407,408]
    • Ahn, J., Marron, J. S.,Muller, K. M., and Chi, Y. (2007), "The High-Dimension, Low-Sample-Size Geometric Representation Holds Under Mild Conditions," Biometrika, 94 (3), 760-766. [402,407,408]
    • (2007) Biometrika , vol.94 , Issue.3 , pp. 760-766
    • Ahn, J.1    Marron, J.S.2    Muller, K.M.3    Chi, Y.4
  • 6
    • 33745156863 scopus 로고    scopus 로고
    • Some Theory for Fisher's Linear Discriminant Function, 'Naive Bayes,' and Some Alternatives When There Are Many More Variables Than Observations
    • [401]
    • Bickel, P. J., and Levina, E. (2004), "Some Theory for Fisher's Linear Discriminant Function, 'Naive Bayes,' and Some Alternatives When There Are Many More Variables Than Observations," Bernoulli, 10, 989-1010. [401]
    • (2004) Bernoulli , vol.10 , pp. 989-1010
    • Bickel, P.J.1    Levina, E.2
  • 8
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data
    • [407]
    • Dudoit, S., Fridlyand, J., and Speed, T. P. (2002), "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, 97, 77-87. [407]
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 9
    • 84944175375 scopus 로고    scopus 로고
    • The Spectrum of Kernel Random Matrices
    • Technical Report 748, UC Berkeley, Dept. of Statistics. to appear. [402]
    • El Karoui, N. (2007), "The Spectrum of Kernel Random Matrices," Technical Report 748, UC Berkeley, Dept. of Statistics. The Annals of Statistics, to appear. [402]
    • (2007) The Annals of Statistics
    • El Karoui, N.1
  • 10
    • 53849089038 scopus 로고    scopus 로고
    • High Dimensional Classification Using Features Annealed Independence Rules
    • [401]
    • Fan, J., and Fan, Y. (2008), "High Dimensional Classification Using Features Annealed Independence Rules," The Annals of Statistics, 36, 2605-2637. [401]
    • (2008) The Annals of Statistics , vol.36 , pp. 2605-2637
    • Fan, J.1    Fan, Y.2
  • 11
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties
    • [405]
    • Fan, J., and Li, R. (2001), "Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties," Journal of the American Statistical Association, 96 (456), 1348-1360. [405]
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 12
    • 3543109140 scopus 로고    scopus 로고
    • A Feature Selection Newton Method for Support Vector Machine Classification
    • [405]
    • Fung, G. M., and Mangasarian, O. L. (2004), "A Feature Selection Newton Method for Support Vector Machine Classification," Computational Optimization and Applications, 28, 185-202. [405]
    • (2004) Computational Optimization and Applications , vol.28 , pp. 185-202
    • Fung, G.M.1    Mangasarian, O.L.2
  • 13
    • 0032326669 scopus 로고    scopus 로고
    • Correlation and High-Dimensional Consistency in Pattern Recognition
    • [401]
    • Ge, N., and Simpson, D. G. (1998), "Correlation and High-Dimensional Consistency in Pattern Recognition," Journal of the American Statistical Association, 93 (443), 995-1006. [401]
    • (1998) Journal of the American Statistical Association , vol.93 , Issue.443 , pp. 995-1006
    • Ge, N.1    Simpson, D.G.2
  • 14
    • 20744451888 scopus 로고    scopus 로고
    • Geometric Representation of High Dimension, Low Sample Size Data
    • [401,402,407-409,413]
    • Hall, P., Marron, J. S., and Neeman, A. (2005), "Geometric Representation of High Dimension, Low Sample Size Data," Journal of the Royal Statistical Society, Ser. B, 67, 427-444. [401,402,407-409,413]
    • (2005) Journal of the Royal Statistical Society, Ser. B , vol.67 , pp. 427-444
    • Hall, P.1    Marron, J.S.2    Neeman, A.3
  • 15
    • 70249103304 scopus 로고    scopus 로고
    • PCA Consistency in High Dimension, Low Sample Size Context
    • [402]
    • Jung, S. K., and Marron, J. S. (2009), "PCA Consistency in High Dimension, Low Sample Size Context," The Annals of Statistics, 37, 4104-4130. [402]
    • (2009) The Annals of Statistics , vol.37 , pp. 4104-4130
    • Jung, S.K.1    Marron, J.S.2
  • 16
    • 0000521473 scopus 로고
    • Ridge Estimators in Logistic Regression
    • [405]
    • Le Cessie, S., and Van Houwelingen, J. (1992), "Ridge Estimators in Logistic Regression," Applied Statistics, 41, 191-201. [405]
    • (1992) Applied Statistics , vol.41 , pp. 191-201
    • Le Cessie, S.1    Van Houwelingen, J.2
  • 18
    • 0036161029 scopus 로고    scopus 로고
    • Support Vector Machine for Classification in Nonstandard Situation
    • [401,403]
    • Lin, Y., Lee, Y., andWahba, G. (2002), "Support Vector Machine for Classification in Nonstandard Situation," Machine Learning, 46, 191-202. [401,403]
    • (2002) Machine Learning , vol.46 , pp. 191-202
    • Lin, Y.1    Lee, Y.2    andWahba, G.3
  • 19
    • 81555227210 scopus 로고    scopus 로고
    • Fisher Consistency of Multicategory Support Vector Machines
    • [411]
    • Liu, Y. (2007), "Fisher Consistency of Multicategory Support Vector Machines," in Eleventh International Conference on Artificial Intelligence and Statistics, pp. 289-296. Available at http://www.stat.umn.edu/~aistat/ proceedings/ start.htm. [411]
    • (2007) Eleventh International Conference on Artificial Intelligence and Statistics , pp. 289-296
    • Liu, Y.1
  • 20
    • 54949118365 scopus 로고    scopus 로고
    • Statistical Significance of Clustering for High Dimension Low Sample Size Data
    • [406]
    • Liu, Y., Hayes, D. N., Nobel, A., and Marron, J. S. (2008), "Statistical Significance of Clustering for High Dimension Low Sample Size Data," Journal of the American Statistical Association, 103 (483), 1281-1293. [406]
    • (2008) Journal of the American Statistical Association , vol.103 , Issue.483 , pp. 1281-1293
    • Liu, Y.1    Hayes, D.N.2    Nobel, A.3    Marron, J.S.4
  • 23
    • 62749137418 scopus 로고    scopus 로고
    • Adaptive Weighted Learning for Unbalanced Multicategory Classification
    • [401,403-405]
    • Qiao, X., and Liu, Y. (2009), "Adaptive Weighted Learning for Unbalanced Multicategory Classification," Biometrics, 65 (1), 159-168. [401,403-405]
    • (2009) Biometrics , vol.65 , Issue.1 , pp. 159-168
    • Qiao, X.1    Liu, Y.2
  • 26
    • 0345327592 scopus 로고    scopus 로고
    • A Simple and Efficient Algorithm for Gene Selection Using Sparse Logistic Regression
    • [405]
    • Shevade, S., and Keerthi, S. (2003), "A Simple and Efficient Algorithm for Gene Selection Using Sparse Logistic Regression," Bioinformatics, 19, 2246-2253. [405]
    • (2003) Bioinformatics , vol.19 , pp. 2246-2253
    • Shevade, S.1    Keerthi, S.2
  • 29
    • 0001873883 scopus 로고    scopus 로고
    • Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACV
    • eds. B. Schölkopf, C. Burges, and A. Smola, Cambridge: MIT Press, [411]
    • Wahba, G. (1999), "Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACV," in Advances in Kernel Methods Support Vector Learning, eds. B. Schölkopf, C. Burges, and A. Smola, Cambridge: MIT Press, pp. 69-88. [411]
    • (1999) Advances in Kernel Methods Support Vector Learning , pp. 69-88
    • Wahba, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.