-
1
-
-
77249090732
-
The Maximal Data Piling Direction for Discrimination
-
[406]
-
Ahn, J., and Marron, J. S. (2010), "The Maximal Data Piling Direction for Discrimination," Biometrika, 97, 254-259. [406]
-
(2010)
Biometrika
, vol.97
, pp. 254-259
-
-
Ahn, J.1
Marron, J.S.2
-
2
-
-
34548536094
-
The High-Dimension, Low-Sample-Size Geometric Representation Holds Under Mild Conditions
-
[402,407,408]
-
Ahn, J., Marron, J. S.,Muller, K. M., and Chi, Y. (2007), "The High-Dimension, Low-Sample-Size Geometric Representation Holds Under Mild Conditions," Biometrika, 94 (3), 760-766. [402,407,408]
-
(2007)
Biometrika
, vol.94
, Issue.3
, pp. 760-766
-
-
Ahn, J.1
Marron, J.S.2
Muller, K.M.3
Chi, Y.4
-
3
-
-
2342458706
-
Second-Order Cone Programming
-
[403]
-
Alizadeh, F., and Goldfarb, D. (2003), "Second-Order Cone Programming," Mathematical Programming, 95, 3-51. [403]
-
(2003)
Mathematical Programming
, vol.95
, pp. 3-51
-
-
Alizadeh, F.1
Goldfarb, D.2
-
4
-
-
33645505792
-
Convexity, Classification, and Risk Bounds
-
[411]
-
Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006), "Convexity, Classification, and Risk Bounds," Journal of the American Statistical Association, 101 (473), 138-156. [411]
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.473
, pp. 138-156
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
5
-
-
0035923521
-
Classification of Human Lung Carcinomas by mRNA Expression Profiling Reveals Distinct Adenocarcinoma Subclasses
-
[406]
-
Bhattacharjee, A., Richards, W. G., Staunton, J., Li, C., Monti, S., Vasa, P., Ladd, C., Beheshti, J., Bueno, R., Gillette, M., Loda, M., Weber, G., Mark, E. J., Lander, E. S., Wong, W., Johnson, B. E., Golub, T. R., Sugarbaker, D. J., and Meyerson, M. (2001), "Classification of Human Lung Carcinomas by mRNA Expression Profiling Reveals Distinct Adenocarcinoma Subclasses," Proceedings of the National Academy of Sciences, 98 (24), 13790-13795. [406]
-
(2001)
Proceedings of the National Academy of Sciences
, vol.98
, Issue.24
, pp. 13790-13795
-
-
Bhattacharjee, A.1
Richards, W.G.2
Staunton, J.3
Li, C.4
Monti, S.5
Vasa, P.6
Ladd, C.7
Beheshti, J.8
Bueno, R.9
Gillette, M.10
Loda, M.11
Weber, G.12
Mark, E.J.13
Lander, E.S.14
Wong, W.15
Johnson, B.E.16
Golub, T.R.17
Sugarbaker, D.J.18
Meyerson, M.19
-
6
-
-
33745156863
-
Some Theory for Fisher's Linear Discriminant Function, 'Naive Bayes,' and Some Alternatives When There Are Many More Variables Than Observations
-
[401]
-
Bickel, P. J., and Levina, E. (2004), "Some Theory for Fisher's Linear Discriminant Function, 'Naive Bayes,' and Some Alternatives When There Are Many More Variables Than Observations," Bernoulli, 10, 989-1010. [401]
-
(2004)
Bernoulli
, vol.10
, pp. 989-1010
-
-
Bickel, P.J.1
Levina, E.2
-
7
-
-
17444371247
-
A Tutorial on v-Support Vector Machines
-
[403]
-
Chen, P. H., Lin, C. J., and Schölkopf, B. (2005), "A Tutorial on v-Support Vector Machines," Applied Stochastic Models in Business and Industry, 21 (2), 111-136. [403]
-
(2005)
Applied Stochastic Models in Business and Industry
, vol.21
, Issue.2
, pp. 111-136
-
-
Chen, P.H.1
Lin, C.J.2
Schölkopf, B.3
-
8
-
-
0036489046
-
Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data
-
[407]
-
Dudoit, S., Fridlyand, J., and Speed, T. P. (2002), "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, 97, 77-87. [407]
-
(2002)
Journal of the American Statistical Association
, vol.97
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.P.3
-
9
-
-
84944175375
-
The Spectrum of Kernel Random Matrices
-
Technical Report 748, UC Berkeley, Dept. of Statistics. to appear. [402]
-
El Karoui, N. (2007), "The Spectrum of Kernel Random Matrices," Technical Report 748, UC Berkeley, Dept. of Statistics. The Annals of Statistics, to appear. [402]
-
(2007)
The Annals of Statistics
-
-
El Karoui, N.1
-
10
-
-
53849089038
-
High Dimensional Classification Using Features Annealed Independence Rules
-
[401]
-
Fan, J., and Fan, Y. (2008), "High Dimensional Classification Using Features Annealed Independence Rules," The Annals of Statistics, 36, 2605-2637. [401]
-
(2008)
The Annals of Statistics
, vol.36
, pp. 2605-2637
-
-
Fan, J.1
Fan, Y.2
-
11
-
-
1542784498
-
Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties
-
[405]
-
Fan, J., and Li, R. (2001), "Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties," Journal of the American Statistical Association, 96 (456), 1348-1360. [405]
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.456
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
12
-
-
3543109140
-
A Feature Selection Newton Method for Support Vector Machine Classification
-
[405]
-
Fung, G. M., and Mangasarian, O. L. (2004), "A Feature Selection Newton Method for Support Vector Machine Classification," Computational Optimization and Applications, 28, 185-202. [405]
-
(2004)
Computational Optimization and Applications
, vol.28
, pp. 185-202
-
-
Fung, G.M.1
Mangasarian, O.L.2
-
13
-
-
0032326669
-
Correlation and High-Dimensional Consistency in Pattern Recognition
-
[401]
-
Ge, N., and Simpson, D. G. (1998), "Correlation and High-Dimensional Consistency in Pattern Recognition," Journal of the American Statistical Association, 93 (443), 995-1006. [401]
-
(1998)
Journal of the American Statistical Association
, vol.93
, Issue.443
, pp. 995-1006
-
-
Ge, N.1
Simpson, D.G.2
-
14
-
-
20744451888
-
Geometric Representation of High Dimension, Low Sample Size Data
-
[401,402,407-409,413]
-
Hall, P., Marron, J. S., and Neeman, A. (2005), "Geometric Representation of High Dimension, Low Sample Size Data," Journal of the Royal Statistical Society, Ser. B, 67, 427-444. [401,402,407-409,413]
-
(2005)
Journal of the Royal Statistical Society, Ser. B
, vol.67
, pp. 427-444
-
-
Hall, P.1
Marron, J.S.2
Neeman, A.3
-
15
-
-
70249103304
-
PCA Consistency in High Dimension, Low Sample Size Context
-
[402]
-
Jung, S. K., and Marron, J. S. (2009), "PCA Consistency in High Dimension, Low Sample Size Context," The Annals of Statistics, 37, 4104-4130. [402]
-
(2009)
The Annals of Statistics
, vol.37
, pp. 4104-4130
-
-
Jung, S.K.1
Marron, J.S.2
-
16
-
-
0000521473
-
Ridge Estimators in Logistic Regression
-
[405]
-
Le Cessie, S., and Van Houwelingen, J. (1992), "Ridge Estimators in Logistic Regression," Applied Statistics, 41, 191-201. [405]
-
(1992)
Applied Statistics
, vol.41
, pp. 191-201
-
-
Le Cessie, S.1
Van Houwelingen, J.2
-
17
-
-
0242698123
-
Ridge Estimation in Logistic Regression
-
[405]
-
Lee, A., and Silvapulle, M. (1988), "Ridge Estimation in Logistic Regression," Communications in Statistics, Simulation and Computation, 17, 1231- 1257. [405]
-
(1988)
Communications in Statistics, Simulation and Computation
, vol.17
, pp. 1231-1257
-
-
Lee, A.1
Silvapulle, M.2
-
18
-
-
0036161029
-
Support Vector Machine for Classification in Nonstandard Situation
-
[401,403]
-
Lin, Y., Lee, Y., andWahba, G. (2002), "Support Vector Machine for Classification in Nonstandard Situation," Machine Learning, 46, 191-202. [401,403]
-
(2002)
Machine Learning
, vol.46
, pp. 191-202
-
-
Lin, Y.1
Lee, Y.2
andWahba, G.3
-
19
-
-
81555227210
-
Fisher Consistency of Multicategory Support Vector Machines
-
[411]
-
Liu, Y. (2007), "Fisher Consistency of Multicategory Support Vector Machines," in Eleventh International Conference on Artificial Intelligence and Statistics, pp. 289-296. Available at http://www.stat.umn.edu/~aistat/ proceedings/ start.htm. [411]
-
(2007)
Eleventh International Conference on Artificial Intelligence and Statistics
, pp. 289-296
-
-
Liu, Y.1
-
20
-
-
54949118365
-
Statistical Significance of Clustering for High Dimension Low Sample Size Data
-
[406]
-
Liu, Y., Hayes, D. N., Nobel, A., and Marron, J. S. (2008), "Statistical Significance of Clustering for High Dimension Low Sample Size Data," Journal of the American Statistical Association, 103 (483), 1281-1293. [406]
-
(2008)
Journal of the American Statistical Association
, vol.103
, Issue.483
, pp. 1281-1293
-
-
Liu, Y.1
Hayes, D.N.2
Nobel, A.3
Marron, J.S.4
-
22
-
-
38349049321
-
Distance Weighted Discrimination
-
[401-403,406,411]
-
Marron, J. S., Todd, M., and Ahn, J. (2007), "Distance Weighted Discrimination," Journal of the American Statistical Association, 102 (480), 1267- 1271. [401-403,406,411]
-
(2007)
Journal of the American Statistical Association
, vol.102
, Issue.480
, pp. 1267-1271
-
-
Marron, J.S.1
Todd, M.2
Ahn, J.3
-
23
-
-
62749137418
-
Adaptive Weighted Learning for Unbalanced Multicategory Classification
-
[401,403-405]
-
Qiao, X., and Liu, Y. (2009), "Adaptive Weighted Learning for Unbalanced Multicategory Classification," Biometrics, 65 (1), 159-168. [401,403-405]
-
(2009)
Biometrics
, vol.65
, Issue.1
, pp. 159-168
-
-
Qiao, X.1
Liu, Y.2
-
24
-
-
84944146038
-
-
Technical Report 08-09, UNC Chapel Hill, Dept. of Statistics and OR. [412]
-
Qiao, X., Zhang, H. H., Liu, Y., Todd, M. J., and Marron, J. S. (2008), "Asymptotic Properties of Distance-Weighted Discrimination," Technical Report 08-09, UNC Chapel Hill, Dept. of Statistics and OR. [412]
-
(2008)
Asymptotic Properties of Distance-Weighted Discrimination
-
-
Qiao, X.1
Zhang, H.H.2
Liu, Y.3
Todd, M.J.4
Marron, J.S.5
-
26
-
-
0345327592
-
A Simple and Efficient Algorithm for Gene Selection Using Sparse Logistic Regression
-
[405]
-
Shevade, S., and Keerthi, S. (2003), "A Simple and Efficient Algorithm for Gene Selection Using Sparse Logistic Regression," Bioinformatics, 19, 2246-2253. [405]
-
(2003)
Bioinformatics
, vol.19
, pp. 2246-2253
-
-
Shevade, S.1
Keerthi, S.2
-
27
-
-
0001287271
-
Regression Shrinkage and Selection via the Lasso
-
[405]
-
Tibshirani, R. (1996), "Regression Shrinkage and Selection via the Lasso," Journal of the Royal Statistical Society, Ser. B, 58, 267-288. [405]
-
(1996)
Journal of the Royal Statistical Society, Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
29
-
-
0001873883
-
Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACV
-
eds. B. Schölkopf, C. Burges, and A. Smola, Cambridge: MIT Press, [411]
-
Wahba, G. (1999), "Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACV," in Advances in Kernel Methods Support Vector Learning, eds. B. Schölkopf, C. Burges, and A. Smola, Cambridge: MIT Press, pp. 69-88. [411]
-
(1999)
Advances in Kernel Methods Support Vector Learning
, pp. 69-88
-
-
Wahba, G.1
|