메뉴 건너뛰기




Volumn 22, Issue 1, 2006, Pages 88-95

Gene selection using support vector machines with non-convex penalty

Author keywords

[No Author keywords available]

Indexed keywords

ACYL COENZYME A OXIDASE; APOLIPOPROTEIN D; ARYLAMINE ACETYLTRANSFERASE; CADHERIN; COXSACKIE VIRUS AND ADENOVIRUS RECEPTOR; CX3C CHEMOKINE; ESTROGEN RECEPTOR; FATTY ACID BINDING PROTEIN; FIBROMODULIN; HISTONE H2B; LACTOFERRIN; MEGALIN; MUCIN 1; ORGANIC CATION TRANSPORTER; PHOSPHOPROTEIN PHOSPHATASE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE (UBIQUINONE); RGS PROTEIN; STEFIN A; TENASCIN;

EID: 30344438839     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/bti736     Document Type: Article
Times cited : (230)

References (37)
  • 1
    • 12344304266 scopus 로고    scopus 로고
    • Gene selection using a two-level hierarchical Bayesian model
    • Bae,K. and Mallick,B.K. (2004) Gene selection using a two-level hierarchical Bayesian model. Bioinformatics, 20, 3423-3430.
    • (2004) Bioinformatics , vol.20 , pp. 3423-3430
    • Bae, K.1    Mallick, B.K.2
  • 2
    • 0347090327 scopus 로고    scopus 로고
    • Adjustment of systematic microarray data biases
    • Benito,M. et al. (2004) Adjustment of systematic microarray data biases. Bioinformatics, 20, 105-144.
    • (2004) Bioinformatics , vol.20 , pp. 105-144
    • Benito, M.1
  • 5
    • 0036161011 scopus 로고    scopus 로고
    • Choosing kernel parameters for SVMs
    • Chaplle,O. et al. (2002) Choosing kernel parameters for SVMs. Mach. Learning, 46, 131-159.
    • (2002) Mach. Learning , vol.46 , pp. 131-159
    • Chaplle, O.1
  • 8
    • 0041958932 scopus 로고
    • Ideal spatial adaptation via wavelet shrinkage
    • Donoho,D. and Johnstone,I. (1994) Ideal spatial adaptation via wavelet shrinkage. Biometrika, 81, 425-455.
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.1    Johnstone, I.2
  • 9
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via penalized likelihood
    • Fan,J. and Li,R. (2001) Variable selection via penalized likelihood. J. Am. Stat. Assoc., 96, 1348-1360.
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 10
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection Newton method for support vector machine classification
    • Fung,G. and Mangasarian,O.L. (2004) A feature selection Newton method for support vector machine classification. Comput. Optim. Appl. J., 28, 185-202.
    • (2004) Comput. Optim. Appl. J. , vol.28 , pp. 185-202
    • Fung, G.1    Mangasarian, O.L.2
  • 11
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey,T. et al. (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16, 906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.1
  • 12
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub,R. et al. (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286, 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, R.1
  • 13
    • 85156255820 scopus 로고    scopus 로고
    • Adaptive scaling for feature selection in SVMs
    • NIPS
    • Grandvalet,Y. and Canu,S. (2002) Adaptive scaling for feature selection in SVMs. Neural Inform. Processing Syst., NIPS 2002, 553-560.
    • (2002) Neural Inform. Processing Syst. , vol.2002 , pp. 553-560
    • Grandvalet, Y.1    Canu, S.2
  • 14
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using SVM
    • Guyon,I. et al. (2002) Gene selection for cancer classification using SVM. Mach. Learning, 46, 389-422.
    • (2002) Mach. Learning , vol.46 , pp. 389-422
    • Guyon, I.1
  • 15
    • 20744451888 scopus 로고    scopus 로고
    • Geometric representation of high dimension low sample size data
    • Hall,P. et al. (2005) Geometric representation of high dimension low sample size data. J. R. Statist. Soc. B, 67, 427-444.
    • (2005) J. R. Statist. Soc. B , vol.67 , pp. 427-444
    • Hall, P.1
  • 17
    • 10244276949 scopus 로고    scopus 로고
    • A spline function approach for detecting differentially expressed genes in microarray data analysis
    • He,W. (2004) A spline function approach for detecting differentially expressed genes in microarray data analysis. Bioinformatics, 20, 2954-2963.
    • (2004) Bioinformatics , vol.20 , pp. 2954-2963
    • He, W.1
  • 18
    • 0022848955 scopus 로고
    • Feature selection and extraction
    • Young,T.Y. and Fu,K.-S. (eds), Academic Press, NY
    • Kitter,J. (1986) Feature selection and extraction. In Young,T.Y. and Fu,K.-S. (eds), Handbook of Pattern Recognition and Image Processing. Academic Press, NY.
    • (1986) Handbook of Pattern Recognition and Image Processing
    • Kitter, J.1
  • 19
    • 12244265090 scopus 로고    scopus 로고
    • Gene selection: A Bayesian variable selection approach
    • Lee,E. et al. (2003) Gene selection: A Bayesian variable selection approach. Bioinformatics, 19, 90-97.
    • (2003) Bioinformatics , vol.19 , pp. 90-97
    • Lee, E.1
  • 20
    • 0036258405 scopus 로고    scopus 로고
    • SVM and the Bayes rule in classification
    • Lin,Y. (2002) SVM and the Bayes rule in classification. Data Mining Knowledge Discov., 6, 259-275.
    • (2002) Data Mining Knowledge Discov. , vol.6 , pp. 259-275
    • Lin, Y.1
  • 21
    • 30344445338 scopus 로고    scopus 로고
    • Distance weighted discrimination
    • in press
    • Marron,J.S. et al. (2004) Distance weighted discrimination. J. Am. Stat. Assoc., in press.
    • (2004) J. Am. Stat. Assoc.
    • Marron, J.S.1
  • 24
    • 0035999977 scopus 로고    scopus 로고
    • A comparative review of statistical methods for discovering differently expressed genes in replicated microarray experiments
    • Pan,W. (2002) A comparative review of statistical methods for discovering differently expressed genes in replicated microarray experiments. Bioinformatics, 18, 546-554.
    • (2002) Bioinformatics , vol.18 , pp. 546-554
    • Pan, W.1
  • 26
    • 0034680102 scopus 로고    scopus 로고
    • Molecular portraits of human breast tumors
    • Perou,C.M. et al. (2000) Molecular portraits of human breast tumors. Nature, 406, 747-752.
    • (2000) Nature , vol.406 , pp. 747-752
    • Perou, C.M.1
  • 27
    • 84890447445 scopus 로고    scopus 로고
    • Variable selection using SVM-based Criteria
    • Rakotomamonjy,A. (2003) Variable selection using SVM-based Criteria. J. Mach. Learning Res., 3, 1357-1370.
    • (2003) J. Mach. Learning Res. , vol.3 , pp. 1357-1370
    • Rakotomamonjy, A.1
  • 28
    • 0042838307 scopus 로고    scopus 로고
    • Breast cancer classification and prognosis based on gene expression profiles from a population-based study
    • Sotiriou,C. et al. (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. USA, 100, 10393-10398.
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 10393-10398
    • Sotiriou, C.1
  • 29
    • 0038742865 scopus 로고    scopus 로고
    • From measurements of metabolites to metabolomics: An 'on the fly' perspective illustrated by recent studies of carbon-nitrogen interactions
    • Stitt,M. and Fernie,A.R. (2003) From measurements of metabolites to metabolomics: An 'on the fly' perspective illustrated by recent studies of carbon-nitrogen interactions. Curr. Opin. Biotechnol., 14, 136-144.
    • (2003) Curr. Opin. Biotechnol. , vol.14 , pp. 136-144
    • Stitt, M.1    Fernie, A.R.2
  • 30
    • 0034911875 scopus 로고    scopus 로고
    • An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
    • Thomas,G. et al. (2001) An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res., 11, 1227-1236.
    • (2001) Genome Res. , vol.11 , pp. 1227-1236
    • Thomas, G.1
  • 31
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani,R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc., B, 58, 267-288.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 32
    • 0036856209 scopus 로고    scopus 로고
    • Nonparametric methods for identifying differentially expressed genes in microarray data
    • Troyanskaya,G. et al. (2002) Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics, 18, 1454-1461.
    • (2002) Bioinformatics , vol.18 , pp. 1454-1461
    • Troyanskaya, G.1
  • 33
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • van't Veer,L. et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530-536.
    • (2002) Nature , vol.415 , pp. 530-536
    • van't Veer, L.1
  • 35
    • 0242295767 scopus 로고    scopus 로고
    • Bayes factor regression models in the 'large p, small n' paradigm
    • West,M. (2003) Bayes factor regression models in the 'large p, small n' paradigm. Bayesian Statistics, 7, 723-732.
    • (2003) Bayesian Statistics , vol.7 , pp. 723-732
    • West, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.