-
1
-
-
12344304266
-
Gene selection using a two-level hierarchical Bayesian model
-
Bae,K. and Mallick,B.K. (2004) Gene selection using a two-level hierarchical Bayesian model. Bioinformatics, 20, 3423-3430.
-
(2004)
Bioinformatics
, vol.20
, pp. 3423-3430
-
-
Bae, K.1
Mallick, B.K.2
-
2
-
-
0347090327
-
Adjustment of systematic microarray data biases
-
Benito,M. et al. (2004) Adjustment of systematic microarray data biases. Bioinformatics, 20, 105-144.
-
(2004)
Bioinformatics
, vol.20
, pp. 105-144
-
-
Benito, M.1
-
3
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Pittsburgh PA
-
Boser,E., Guyon,M. and Vapnik,V. (1992) A training algorithm for optimal margin classifiers. In Proceedings of the Fifth ACM Workshop on Computational Learning Theory, Pittsburgh, PA, pp. 144-152.
-
(1992)
Proceedings of the Fifth ACM Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, E.1
Guyon, M.2
Vapnik, V.3
-
5
-
-
0036161011
-
Choosing kernel parameters for SVMs
-
Chaplle,O. et al. (2002) Choosing kernel parameters for SVMs. Mach. Learning, 46, 131-159.
-
(2002)
Mach. Learning
, vol.46
, pp. 131-159
-
-
Chaplle, O.1
-
8
-
-
0041958932
-
Ideal spatial adaptation via wavelet shrinkage
-
Donoho,D. and Johnstone,I. (1994) Ideal spatial adaptation via wavelet shrinkage. Biometrika, 81, 425-455.
-
(1994)
Biometrika
, vol.81
, pp. 425-455
-
-
Donoho, D.1
Johnstone, I.2
-
9
-
-
1542784498
-
Variable selection via penalized likelihood
-
Fan,J. and Li,R. (2001) Variable selection via penalized likelihood. J. Am. Stat. Assoc., 96, 1348-1360.
-
(2001)
J. Am. Stat. Assoc.
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
10
-
-
3543109140
-
A feature selection Newton method for support vector machine classification
-
Fung,G. and Mangasarian,O.L. (2004) A feature selection Newton method for support vector machine classification. Comput. Optim. Appl. J., 28, 185-202.
-
(2004)
Comput. Optim. Appl. J.
, vol.28
, pp. 185-202
-
-
Fung, G.1
Mangasarian, O.L.2
-
11
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
Furey,T. et al. (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16, 906-914.
-
(2000)
Bioinformatics
, vol.16
, pp. 906-914
-
-
Furey, T.1
-
12
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
Golub,R. et al. (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286, 531-537.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, R.1
-
13
-
-
85156255820
-
Adaptive scaling for feature selection in SVMs
-
NIPS
-
Grandvalet,Y. and Canu,S. (2002) Adaptive scaling for feature selection in SVMs. Neural Inform. Processing Syst., NIPS 2002, 553-560.
-
(2002)
Neural Inform. Processing Syst.
, vol.2002
, pp. 553-560
-
-
Grandvalet, Y.1
Canu, S.2
-
14
-
-
0036161259
-
Gene selection for cancer classification using SVM
-
Guyon,I. et al. (2002) Gene selection for cancer classification using SVM. Mach. Learning, 46, 389-422.
-
(2002)
Mach. Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
-
15
-
-
20744451888
-
Geometric representation of high dimension low sample size data
-
Hall,P. et al. (2005) Geometric representation of high dimension low sample size data. J. R. Statist. Soc. B, 67, 427-444.
-
(2005)
J. R. Statist. Soc. B
, vol.67
, pp. 427-444
-
-
Hall, P.1
-
17
-
-
10244276949
-
A spline function approach for detecting differentially expressed genes in microarray data analysis
-
He,W. (2004) A spline function approach for detecting differentially expressed genes in microarray data analysis. Bioinformatics, 20, 2954-2963.
-
(2004)
Bioinformatics
, vol.20
, pp. 2954-2963
-
-
He, W.1
-
18
-
-
0022848955
-
Feature selection and extraction
-
Young,T.Y. and Fu,K.-S. (eds), Academic Press, NY
-
Kitter,J. (1986) Feature selection and extraction. In Young,T.Y. and Fu,K.-S. (eds), Handbook of Pattern Recognition and Image Processing. Academic Press, NY.
-
(1986)
Handbook of Pattern Recognition and Image Processing
-
-
Kitter, J.1
-
19
-
-
12244265090
-
Gene selection: A Bayesian variable selection approach
-
Lee,E. et al. (2003) Gene selection: A Bayesian variable selection approach. Bioinformatics, 19, 90-97.
-
(2003)
Bioinformatics
, vol.19
, pp. 90-97
-
-
Lee, E.1
-
20
-
-
0036258405
-
SVM and the Bayes rule in classification
-
Lin,Y. (2002) SVM and the Bayes rule in classification. Data Mining Knowledge Discov., 6, 259-275.
-
(2002)
Data Mining Knowledge Discov.
, vol.6
, pp. 259-275
-
-
Lin, Y.1
-
21
-
-
30344445338
-
Distance weighted discrimination
-
in press
-
Marron,J.S. et al. (2004) Distance weighted discrimination. J. Am. Stat. Assoc., in press.
-
(2004)
J. Am. Stat. Assoc.
-
-
Marron, J.S.1
-
23
-
-
30344433980
-
SVM classification of microarray data
-
AI memo 182, CBCL paper 182 MIT, MA
-
Mukherjee,S., Tamayo,P., Slonim,D., Verri,A., Golub,T., Messirov,P. and Poggio,T. (2000) SVM classification of microarray data. AI memo 182, CBCL paper 182. MIT, MA.
-
(2000)
-
-
Mukherjee, S.1
Tamayo, P.2
Slonim, D.3
Verri, A.4
Golub, T.5
Messirov, P.6
Poggio, T.7
-
24
-
-
0035999977
-
A comparative review of statistical methods for discovering differently expressed genes in replicated microarray experiments
-
Pan,W. (2002) A comparative review of statistical methods for discovering differently expressed genes in replicated microarray experiments. Bioinformatics, 18, 546-554.
-
(2002)
Bioinformatics
, vol.18
, pp. 546-554
-
-
Pan, W.1
-
25
-
-
30344456970
-
Gene functional analysis from heterogeneous data
-
Pittsburgh, PA
-
Parvlidis,P., Weston,J., Cai,J. and Grundy,W.N. (2001) Gene functional analysis from heterogeneous data. In Proceedings of 5th International Conference on Computational Biology, Pittsburgh, PA, pp. 249-255.
-
(2001)
Proceedings of 5th International Conference on Computational Biology
, pp. 249-255
-
-
Parvlidis, P.1
Weston, J.2
Cai, J.3
Grundy, W.N.4
-
26
-
-
0034680102
-
Molecular portraits of human breast tumors
-
Perou,C.M. et al. (2000) Molecular portraits of human breast tumors. Nature, 406, 747-752.
-
(2000)
Nature
, vol.406
, pp. 747-752
-
-
Perou, C.M.1
-
27
-
-
84890447445
-
Variable selection using SVM-based Criteria
-
Rakotomamonjy,A. (2003) Variable selection using SVM-based Criteria. J. Mach. Learning Res., 3, 1357-1370.
-
(2003)
J. Mach. Learning Res.
, vol.3
, pp. 1357-1370
-
-
Rakotomamonjy, A.1
-
28
-
-
0042838307
-
Breast cancer classification and prognosis based on gene expression profiles from a population-based study
-
Sotiriou,C. et al. (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. USA, 100, 10393-10398.
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 10393-10398
-
-
Sotiriou, C.1
-
29
-
-
0038742865
-
From measurements of metabolites to metabolomics: An 'on the fly' perspective illustrated by recent studies of carbon-nitrogen interactions
-
Stitt,M. and Fernie,A.R. (2003) From measurements of metabolites to metabolomics: An 'on the fly' perspective illustrated by recent studies of carbon-nitrogen interactions. Curr. Opin. Biotechnol., 14, 136-144.
-
(2003)
Curr. Opin. Biotechnol.
, vol.14
, pp. 136-144
-
-
Stitt, M.1
Fernie, A.R.2
-
30
-
-
0034911875
-
An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
-
Thomas,G. et al. (2001) An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res., 11, 1227-1236.
-
(2001)
Genome Res.
, vol.11
, pp. 1227-1236
-
-
Thomas, G.1
-
31
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
Tibshirani,R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc., B, 58, 267-288.
-
(1996)
J. R. Statist. Soc. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
32
-
-
0036856209
-
Nonparametric methods for identifying differentially expressed genes in microarray data
-
Troyanskaya,G. et al. (2002) Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics, 18, 1454-1461.
-
(2002)
Bioinformatics
, vol.18
, pp. 1454-1461
-
-
Troyanskaya, G.1
-
33
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
van't Veer,L. et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530-536.
-
(2002)
Nature
, vol.415
, pp. 530-536
-
-
van't Veer, L.1
-
35
-
-
0242295767
-
Bayes factor regression models in the 'large p, small n' paradigm
-
West,M. (2003) Bayes factor regression models in the 'large p, small n' paradigm. Bayesian Statistics, 7, 723-732.
-
(2003)
Bayesian Statistics
, vol.7
, pp. 723-732
-
-
West, M.1
|