-
1
-
-
0033618637
-
Thermoelectric cooling and power generation
-
DiSalvo, F.J. Thermoelectric cooling and power generation. Science 1999, 285, 175-195.
-
(1999)
Science
, vol.285
, pp. 175-195
-
-
DiSalvo, F.J.1
-
2
-
-
18744409370
-
On the figure of merit of thermoelectric generators
-
Chen, M.; Lu, S.S.; Liao, B. On the figure of merit of thermoelectric generators. Trans. ASME J. Energy Resour. Technol. 2005, 127, 37-41.
-
(2005)
Trans. ASME J. Energy Resour. Technol
, vol.127
, pp. 37-41
-
-
Chen, M.1
Lu, S.S.2
Liao, B.3
-
3
-
-
20644472437
-
Fabrication method for thermoelectric nanodevices
-
Lim, J.R.; Whitacre, J.F.; Fleurial, J.P.; Huang, C.K.; Ryan, M.A.; Myung, N.V. Fabrication method for thermoelectric nanodevices. Adv. Mater. 2005, 17, 1488-1492.
-
(2005)
Adv. Mater
, vol.17
, pp. 1488-1492
-
-
Lim, J.R.1
Whitacre, J.F.2
Fleurial, J.P.3
Huang, C.K.4
Ryan, M.A.5
Myung, N.V.6
-
4
-
-
0002202947
-
Conversion Efficiency and Figure-of-Merit
-
In, CRC Press: Boca Raton, FL, USAChapter A3
-
Goldsmid, H.J. Chapter A3. Conversion Efficiency and Figure-of-Merit. In CRC Handbook of Thermoelectrics; CRC Press: Boca Raton, FL, USA, 1995; pp. 32-38.
-
(1995)
CRC Handbook of Thermoelectrics
, pp. 32-38
-
-
Goldsmid, H.J.1
-
5
-
-
44849121990
-
Design and fabrication of MEMS thermoelectric generators with high temperature efficiency
-
Huesgen, T.; Wois, P.; Kockmann, N. Design and fabrication of MEMS thermoelectric generators with high temperature efficiency. Sens. Actuators A 2008, 145-146, 423-429.
-
(2008)
Sens. Actuators A
, vol.145-146
, pp. 423-429
-
-
Huesgen, T.1
Wois, P.2
Kockmann, N.3
-
6
-
-
77950595789
-
Design, fabrication and characterization of CMOS MEMS-based thermoelectric power generators
-
Xie, J.; Lee, C.; Feng, H. Design, fabrication and characterization of CMOS MEMS-based thermoelectric power generators. J. Micromech. Syst. 2010, 19, 317-324.
-
(2010)
J. Micromech. Syst
, vol.19
, pp. 317-324
-
-
Xie, J.1
Lee, C.2
Feng, H.3
-
7
-
-
71649083187
-
Realization of a wearable miniaturized thermoelectric generator for human body applications
-
Wang, Z.; Leonov, V.; Fiorini, P.; van Hoof, C. Realization of a wearable miniaturized thermoelectric generator for human body applications. Sens. Actuators A 2009, 156, 95-102.
-
(2009)
Sens. Actuators A
, vol.156
, pp. 95-102
-
-
Wang, Z.1
Leonov, V.2
Fiorini, P.3
van Hoof, C.4
-
9
-
-
78049447477
-
A batch process micromachined thermoelectric energy harvester: Fabrication and characterization
-
doi: 10.1088/0960-1317/20/10/104005
-
Su, J.; Leonov, V.; Goedbloed, M.; van Andel, Y.; de Nooijer, M.C.; Elfrink, R.; Wang, Z.; Vullers, R.J. A batch process micromachined thermoelectric energy harvester: Fabrication and characterization. J. Micromech. Microeng. 2010, doi: 10.1088/0960-1317/20/10/104005.
-
(2010)
J. Micromech. Microeng
-
-
Su, J.1
Leonov, V.2
Goedbloed, M.3
van Andel, Y.4
de Nooijer, M.C.5
Elfrink, R.6
Wang, Z.7
Vullers, R.J.8
-
10
-
-
4344563310
-
Micromachined CMOS thermoelectric generators as on-chip power supply
-
Strasser, M.; Aigner, R.; Lauterbach, C.; Sturm, T.F.; Franosch, M.; Wachutka, G. Micromachined CMOS thermoelectric generators as on-chip power supply. Sens. Actuators A 2004, 114, 362-370.
-
(2004)
Sens. Actuators A
, vol.114
, pp. 362-370
-
-
Strasser, M.1
Aigner, R.2
Lauterbach, C.3
Sturm, T.F.4
Franosch, M.5
Wachutka, G.6
-
11
-
-
67649435976
-
Development of a thermoelectric energy harvester with thermal isolation cavity by standard CMOS process
-
Yang, S.M.; Lee, T.; Jeng, C.A. Development of a thermoelectric energy harvester with thermal isolation cavity by standard CMOS process. Sens. Actuators A 2009, 153, 244-250.
-
(2009)
Sens. Actuators A
, vol.153
, pp. 244-250
-
-
Yang, S.M.1
Lee, T.2
Jeng, C.A.3
-
12
-
-
77950292806
-
Fabrication and characterization of CMOS-MEMS thermoelectric micro generators
-
Kao, P.-H.; Shih, P.-J.; Dai, C.-L.; Liu, M.-C. Fabrication and characterization of CMOS-MEMS thermoelectric micro generators. Sensors 2010, 10, 1315-1325.
-
(2010)
Sensors
, vol.10
, pp. 1315-1325
-
-
Kao, P.-H.1
Shih, P.-J.2
Dai, C.-L.3
Liu, M.-C.4
-
13
-
-
79955884988
-
Characterization of a bulk-micromachined membraneless in-plane thermopile
-
Wang, Z.; van Andel, Y.; Jambunathan, M.; Leonov, V.; Elfrink, R.; Vullers, J.M. Characterization of a bulk-micromachined membraneless in-plane thermopile. J. Electron. Mater. 2011, 40, 499-503.
-
(2011)
J. Electron. Mater
, vol.40
, pp. 499-503
-
-
Wang, Z.1
van Andel, Y.2
Jambunathan, M.3
Leonov, V.4
Elfrink, R.5
Vullers, J.M.6
-
14
-
-
35949006143
-
Thermoelectric figure of merit of a one dimensional conductor
-
Hicks, L.D.; Dresselhaus, M.S. Thermoelectric figure of merit of a one dimensional conductor. Phys. Rev. B Condens. Matter. 1993, 47, 16631-16634.
-
(1993)
Phys. Rev. B Condens. Matter
, vol.47
, pp. 16631-16634
-
-
Hicks, L.D.1
Dresselhaus, M.S.2
-
15
-
-
84862829682
-
Thermoelectric properties of porous silicon
-
De Boor, J.; Kim, D.S.; Ao, X.; Becker, M.; Hinsche, N.F.; Mertig, I.; Zahn, P.; Schmidt, V. Thermoelectric properties of porous silicon. Appl. Phys. A 2012, 107, 789-794.
-
(2012)
Appl. Phys. A
, vol.107
, pp. 789-794
-
-
De Boor, J.1
Kim, D.S.2
Ao, X.3
Becker, M.4
Hinsche, N.F.5
Mertig, I.6
Zahn, P.7
Schmidt, V.8
-
16
-
-
79955527731
-
Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology
-
Li, Y.; Buddharaju, K.; Singh, N.; Lo, G.Q.; Lee, S.J. Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology. IEEE Electr. Dev. Lett. 2011, 32, 674-676.
-
(2011)
IEEE Electr. Dev. Lett
, vol.32
, pp. 674-676
-
-
Li, Y.1
Buddharaju, K.2
Singh, N.3
Lo, G.Q.4
Lee, S.J.5
-
17
-
-
84876932710
-
Simultaneous increase in electrical conductivity and Seebeck coefficient in highly boron-doped nanocrystalline Si
-
doi: 0.1088/0957-4484/24/20/205402
-
Neophytou, N.; Zianni, X.; Kosina, H.; Frabboni, S.; Lorenzi, B.; Narducci, D. Simultaneous increase in electrical conductivity and Seebeck coefficient in highly boron-doped nanocrystalline Si. Nanotechnology 2013, doi: 0.1088/0957-4484/24/20/205402.
-
(2013)
Nanotechnology
-
-
Neophytou, N.1
Zianni, X.2
Kosina, H.3
Frabboni, S.4
Lorenzi, B.5
Narducci, D.6
-
18
-
-
33644482043
-
-
INSPEC: The Institution of Electrical Engineers: London, UK
-
Canham, L. Properties of Porous Si; INSPEC: The Institution of Electrical Engineers: London, UK, 1997; p. 106.
-
(1997)
Properties of Porous Si
, pp. 106
-
-
Canham, L.1
-
20
-
-
77956837871
-
Porous silicon-A versatile host material
-
Granitzer, P.; Rumpf, K. Porous silicon-A versatile host material. Materials 2010, 3, 943-998.
-
(2010)
Materials
, vol.3
, pp. 943-998
-
-
Granitzer, P.1
Rumpf, K.2
-
21
-
-
0034428624
-
Porous silicon as an effective material for thermal isolation on bulk crystalline silicon
-
Nassiopoulou, A.G.; Kaltsas, G. Porous silicon as an effective material for thermal isolation on bulk crystalline silicon. Phys. Status Solidi A 2000, 182, 307-311.
-
(2000)
Phys. Status Solidi A
, vol.182
, pp. 307-311
-
-
Nassiopoulou, A.G.1
Kaltsas, G.2
-
22
-
-
0001154360
-
Thermal conductivity of thick meso-porous silicon layers by micro-Raman scattering
-
Lysenko, V.; Perichon, S.; Remaki, B.; Barbier, D.; Champagnon, B. Thermal conductivity of thick meso-porous silicon layers by micro-Raman scattering. J. Appl. Phys. 1999, 86, 6841-6846.
-
(1999)
J. Appl. Phys
, vol.86
, pp. 6841-6846
-
-
Lysenko, V.1
Perichon, S.2
Remaki, B.3
Barbier, D.4
Champagnon, B.5
-
23
-
-
84879918900
-
Low thermal conductivity porous Si at cryogenic temperatures for cooling applications
-
Valalaki, K.; Nassiopoulou, A.G. Low thermal conductivity porous Si at cryogenic temperatures for cooling applications. J. Phys. D Appl. Phys. 2013, 46, 295101-295110.
-
(2013)
J. Phys. D Appl. Phys
, vol.46
, pp. 295101-295110
-
-
Valalaki, K.1
Nassiopoulou, A.G.2
-
25
-
-
22544464879
-
Characterization of a silicon thermal gas-flow sensor with porous silicon thermal isolation
-
Kaltsas, G.; Nassiopoulos, A.A.; Nassiopoulou, A.G. Characterization of a silicon thermal gas-flow sensor with porous silicon thermal isolation. IEEE Sens. J. 2002, 2, 463-475.
-
(2002)
IEEE Sens. J
, vol.2
, pp. 463-475
-
-
Kaltsas, G.1
Nassiopoulos, A.A.2
Nassiopoulou, A.G.3
-
26
-
-
0343496773
-
Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation
-
Kaltsas, G.; Nassiopoulou, A.G. Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation. Sens. Actuators A 1999, 76, 133-138.
-
(1999)
Sens. Actuators A
, vol.76
, pp. 133-138
-
-
Kaltsas, G.1
Nassiopoulou, A.G.2
-
27
-
-
84870502561
-
Novel air flow meter for an automobile engine using a Si sensor with porous Si thermal isolation
-
Hourdakis, E.; Sarafis, P.; Nassiopoulou, A.G. Novel air flow meter for an automobile engine using a Si sensor with porous Si thermal isolation. Sensors 2012, 12, 14838-14850.
-
(2012)
Sensors
, vol.12
, pp. 14838-14850
-
-
Hourdakis, E.1
Sarafis, P.2
Nassiopoulou, A.G.3
-
28
-
-
67650003333
-
Macroporous silicon hydrogen diffusion layers for micro-fuel cells
-
Desplobain, S; Gautier, G.; Ventura, L.; Bouillon, P. Macroporous silicon hydrogen diffusion layers for micro-fuel cells. Phys. Status Solidi A 2009, 206, 1282-1285.
-
(2009)
Phys. Status Solidi A
, vol.206
, pp. 1282-1285
-
-
Desplobain, S.1
Gautier, G.2
Ventura, L.3
Bouillon, P.4
-
29
-
-
34047119862
-
Process dependence of the thermal conductivity of image reversal photoresist layers
-
Hung, M.; Ju, Y. Process dependence of the thermal conductivity of image reversal photoresist layers. J. Vac. Sci. Technol. 2007, 25, 224-228.
-
(2007)
J. Vac. Sci. Technol
, vol.25
, pp. 224-228
-
-
Hung, M.1
Ju, Y.2
|