메뉴 건너뛰기




Volumn 102, Issue , 2013, Pages 602-612

Development of soft-sensors for online quality prediction of sequential-reactor-multi-grade industrial processes

Author keywords

Chemical reactors; Just in time learning; Sequential reactor multi grade process; Soft sensor; Support vector regression

Indexed keywords

CHEMICAL REACTORS; SENSORS;

EID: 84884721930     PISSN: 00092509     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ces.2013.07.002     Document Type: Article
Times cited : (44)

References (49)
  • 1
    • 59349107270 scopus 로고    scopus 로고
    • A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant
    • Ahmed F., Nazir S., Yeo Y.K. A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant. Korean Journal of Chemical Engineering 2009, 26(1):14-20.
    • (2009) Korean Journal of Chemical Engineering , vol.26 , Issue.1 , pp. 14-20
    • Ahmed, F.1    Nazir, S.2    Yeo, Y.K.3
  • 4
    • 0242288799 scopus 로고    scopus 로고
    • A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine
    • Cao L.J., Chua K.S., Chong W.K., Lee H.P., Gu Q.M. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 2003, 55(1-2):321-336.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 321-336
    • Cao, L.J.1    Chua, K.S.2    Chong, W.K.3    Lee, H.P.4    Gu, Q.M.5
  • 5
    • 8444241860 scopus 로고    scopus 로고
    • Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
    • Cawley G.C., Talbot N.L.C. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks 2004, 17(10):1467-1475.
    • (2004) Neural Networks , vol.17 , Issue.10 , pp. 1467-1475
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 6
    • 34247558132 scopus 로고    scopus 로고
    • Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
    • Cawley G.C., Talbot N.L.C. Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters. Journal of Machine Learning Research 2007, 8(4):841-861.
    • (2007) Journal of Machine Learning Research , vol.8 , Issue.4 , pp. 841-861
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 7
    • 61849183105 scopus 로고    scopus 로고
    • Bagging for Gaussian process regression
    • Chen T., Ren J.H. Bagging for Gaussian process regression. Neurocomputing 2009, 72:1605-1610.
    • (2009) Neurocomputing , vol.72 , pp. 1605-1610
    • Chen, T.1    Ren, J.H.2
  • 8
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng C., Chiu M.S. A new data-based methodology for nonlinear process modeling. Chemical Engineering Science 2004, 59(13):2801-2810.
    • (2004) Chemical Engineering Science , vol.59 , Issue.13 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.S.2
  • 9
    • 79951983943 scopus 로고    scopus 로고
    • Application of support vector regression for developing soft sensors for nonlinear processes
    • Chitralekha S.B., Shah S.L. Application of support vector regression for developing soft sensors for nonlinear processes. Canadian Journal of Chemical Engineering 2010, 88(5):696-709.
    • (2010) Canadian Journal of Chemical Engineering , vol.88 , Issue.5 , pp. 696-709
    • Chitralekha, S.B.1    Shah, S.L.2
  • 11
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AIChE Journal 2009, 55(7):1754-1765.
    • (2009) AIChE Journal , vol.55 , Issue.7 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 12
    • 79954505385 scopus 로고    scopus 로고
    • Quality prediction for polypropylene production process based on CLGPR model
    • Ge Z.Q., Chen T., Song Z.H. Quality prediction for polypropylene production process based on CLGPR model. Control Engineering Practice 2011, 19(5):423-432.
    • (2011) Control Engineering Practice , vol.19 , Issue.5 , pp. 423-432
    • Ge, Z.Q.1    Chen, T.2    Song, Z.H.3
  • 13
    • 78650524009 scopus 로고    scopus 로고
    • A comparative study of just-in-time-learning based methods for online soft sensor modeling
    • Ge Z.Q., Song Z.H. A comparative study of just-in-time-learning based methods for online soft sensor modeling. Chemometrics and Intelligent Laboratory Systems 2010, 104(2):306-317.
    • (2010) Chemometrics and Intelligent Laboratory Systems , vol.104 , Issue.2 , pp. 306-317
    • Ge, Z.Q.1    Song, Z.H.2
  • 14
    • 57049112694 scopus 로고    scopus 로고
    • ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
    • Gonzaga J.C.B., Meleiro L.A.C., Kiang C., Filho R.M. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Computers & Chemical Engineering 2009, 33(1):43-49.
    • (2009) Computers & Chemical Engineering , vol.33 , Issue.1 , pp. 43-49
    • Gonzaga, J.C.B.1    Meleiro, L.A.C.2    Kiang, C.3    Filho, R.M.4
  • 15
    • 26944462733 scopus 로고    scopus 로고
    • Independent component analysis yields chemically interpretable latent variables in multivariate regression
    • Gustafsson M.G. Independent component analysis yields chemically interpretable latent variables in multivariate regression. Journal of Chemical Information and Modeling 2005, 45:1244-1255.
    • (2005) Journal of Chemical Information and Modeling , vol.45 , pp. 1244-1255
    • Gustafsson, M.G.1
  • 16
    • 12344280395 scopus 로고    scopus 로고
    • Melt index modeling with support vector machines, partial least squares, and artificial neural networks
    • Han I.S., Han C.H., Chung C.B. Melt index modeling with support vector machines, partial least squares, and artificial neural networks. Journal of Applied Polymer Science 2005, 95(4):967-974.
    • (2005) Journal of Applied Polymer Science , vol.95 , Issue.4 , pp. 967-974
    • Han, I.S.1    Han, C.H.2    Chung, C.B.3
  • 17
    • 84875048235 scopus 로고    scopus 로고
    • Enhanced batch process monitoring using just-in-time-learning based kernel partial least squares
    • Hu Y., Ma H., Shi H. Enhanced batch process monitoring using just-in-time-learning based kernel partial least squares. Chemometrics and Intelligent Laboratory Systems 2013, 123:15-27.
    • (2013) Chemometrics and Intelligent Laboratory Systems , vol.123 , pp. 15-27
    • Hu, Y.1    Ma, H.2    Shi, H.3
  • 19
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Kadlec P., Grbic R., Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Computers & Chemical Engineering 2011, 35(1):1-24.
    • (2011) Computers & Chemical Engineering , vol.35 , Issue.1 , pp. 1-24
    • Kadlec, P.1    Grbic, R.2    Gabrys, B.3
  • 20
    • 79955476246 scopus 로고    scopus 로고
    • Novel soft sensor method for detecting completion of transition in industrial polymer processes
    • Kaneko H., Arakawa M., Funatsu K. Novel soft sensor method for detecting completion of transition in industrial polymer processes. Computers & Chemical Engineering 2011, 35(6):1135-1142.
    • (2011) Computers & Chemical Engineering , vol.35 , Issue.6 , pp. 1135-1142
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 21
    • 80052838846 scopus 로고    scopus 로고
    • Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship
    • Kaneko H., Funatsu K. Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship. Industrial & Engineering Chemistry Research 2011, 50(18):10643-10651.
    • (2011) Industrial & Engineering Chemistry Research , vol.50 , Issue.18 , pp. 10643-10651
    • Kaneko, H.1    Funatsu, K.2
  • 22
    • 77956444702 scopus 로고    scopus 로고
    • The state of the art in chemical process control in Japan: good practice and questionnaire survey
    • Kano M., Ogawa M. The state of the art in chemical process control in Japan: good practice and questionnaire survey. Journal of Process Control 2010, 20(9):969-982.
    • (2010) Journal of Process Control , vol.20 , Issue.9 , pp. 969-982
    • Kano, M.1    Ogawa, M.2
  • 23
    • 11844259510 scopus 로고    scopus 로고
    • Clustering-based hybrid soft sensor for an industrial polypropylene process with grade changeover operation
    • Kim M., Lee Y.H., Han I.S., Han C.H. Clustering-based hybrid soft sensor for an industrial polypropylene process with grade changeover operation. Industrial & Engineering Chemistry Research 2005, 44(2):334-342.
    • (2005) Industrial & Engineering Chemistry Research , vol.44 , Issue.2 , pp. 334-342
    • Kim, M.1    Lee, Y.H.2    Han, I.S.3    Han, C.H.4
  • 24
    • 28244466399 scopus 로고    scopus 로고
    • Challenges in particulate polymerization reactor modeling and optimization: a population balance perspective
    • Kiparissides C. Challenges in particulate polymerization reactor modeling and optimization: a population balance perspective. Journal of Process Control 2006, 16(3):205-224.
    • (2006) Journal of Process Control , vol.16 , Issue.3 , pp. 205-224
    • Kiparissides, C.1
  • 25
    • 15944390632 scopus 로고    scopus 로고
    • Weighted support vector machine for quality estimation in the polymerization process
    • Lee D.E., Song J.H., Song H.O., Yoon E.S. Weighted support vector machine for quality estimation in the polymerization process. Industrial & Engineering Chemistry Research 2005, 44(7):2101-2105.
    • (2005) Industrial & Engineering Chemistry Research , vol.44 , Issue.7 , pp. 2101-2105
    • Lee, D.E.1    Song, J.H.2    Song, H.O.3    Yoon, E.S.4
  • 26
    • 34147222905 scopus 로고    scopus 로고
    • On-line soft sensor for polyethylene process with multiple production grades
    • Liu J.L. On-line soft sensor for polyethylene process with multiple production grades. Control Engineering Practice 2007, 15(7):769-778.
    • (2007) Control Engineering Practice , vol.15 , Issue.7 , pp. 769-778
    • Liu, J.L.1
  • 28
    • 36549010042 scopus 로고    scopus 로고
    • Local least squares support vector regression with application to online modeling for batch processes
    • Liu Y., Wang H.Q., Li P. Local least squares support vector regression with application to online modeling for batch processes. Journal of Chemical Industry and Engineering (China) 2007, 58(11):2846-2851.
    • (2007) Journal of Chemical Industry and Engineering (China) , vol.58 , Issue.11 , pp. 2846-2851
    • Liu, Y.1    Wang, H.Q.2    Li, P.3
  • 29
    • 67650083264 scopus 로고    scopus 로고
    • Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size
    • Liu Y., Hu N.P., Wang H.Q., Li P. Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size. Industrial & Engineering Chemistry Research 2009, 48(12):5731-5741.
    • (2009) Industrial & Engineering Chemistry Research , vol.48 , Issue.12 , pp. 5731-5741
    • Liu, Y.1    Hu, N.P.2    Wang, H.Q.3    Li, P.4
  • 30
    • 84863357539 scopus 로고    scopus 로고
    • Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes
    • Liu Y., Gao Z.L., Li P., Wang H.Q. Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes. Industrial & Engineering Chemistry Research 2012, 51(11):4313-4327.
    • (2012) Industrial & Engineering Chemistry Research , vol.51 , Issue.11 , pp. 4313-4327
    • Liu, Y.1    Gao, Z.L.2    Li, P.3    Wang, H.Q.4
  • 31
    • 84863191342 scopus 로고    scopus 로고
    • Inferential model for industrial polypropylene melt index prediction with embedded priori knowledge and delay estimation
    • Lou H.C., Su H.Y., Xie L., Gu Y., Rong G. Inferential model for industrial polypropylene melt index prediction with embedded priori knowledge and delay estimation. Industrial & Engineering Chemistry Research 2012, 51(25):8510-8525.
    • (2012) Industrial & Engineering Chemistry Research , vol.51 , Issue.25 , pp. 8510-8525
    • Lou, H.C.1    Su, H.Y.2    Xie, L.3    Gu, Y.4    Rong, G.5
  • 32
    • 78649440514 scopus 로고    scopus 로고
    • Modelling and control of different types of polymerization processes using neural networks technique: a review
    • Mat Noor R.A., Ahmad Z., Mat Don M., Uzir M.H. Modelling and control of different types of polymerization processes using neural networks technique: a review. Canadian Journal of Chemical Engineering 2010, 88(6):1065-1084.
    • (2010) Canadian Journal of Chemical Engineering , vol.88 , Issue.6 , pp. 1065-1084
    • Mat Noor, R.A.1    Ahmad, Z.2    Mat Don, M.3    Uzir, M.H.4
  • 33
    • 0026169941 scopus 로고
    • On-line inference of polymer properties in an industrial polyethylene reactor
    • McAuley K.B., MacGregor J.F. On-line inference of polymer properties in an industrial polyethylene reactor. AIChE Journal 1991, 37:825-835.
    • (1991) AIChE Journal , vol.37 , pp. 825-835
    • McAuley, K.B.1    MacGregor, J.F.2
  • 34
    • 0033874542 scopus 로고    scopus 로고
    • Quality control of polymer production processes
    • Ohshima M., Tanigaki M. Quality control of polymer production processes. Journal of Process Control 2000, 10(2):135-148.
    • (2000) Journal of Process Control , vol.10 , Issue.2 , pp. 135-148
    • Ohshima, M.1    Tanigaki, M.2
  • 35
    • 40649092045 scopus 로고    scopus 로고
    • Low rank updated LS-SVM classifiers for fast variable selection
    • Ojeda F., Suykens J.A.K., De Moor B. Low rank updated LS-SVM classifiers for fast variable selection. Neural Networks 2008, 21(2-3):437-449.
    • (2008) Neural Networks , vol.21 , Issue.2-3 , pp. 437-449
    • Ojeda, F.1    Suykens, J.A.K.2    De Moor, B.3
  • 36
    • 84866065028 scopus 로고    scopus 로고
    • An inferential modeling method using enumerative PLS based nonnegative garrote regression
    • Pan C.C., Bai J., Yang G.K., Wong D.S.H., Jang S.S. An inferential modeling method using enumerative PLS based nonnegative garrote regression. Journal of Process Control 2012, 22:1637-1646.
    • (2012) Journal of Process Control , vol.22 , pp. 1637-1646
    • Pan, C.C.1    Bai, J.2    Yang, G.K.3    Wong, D.S.H.4    Jang, S.S.5
  • 37
    • 33747883073 scopus 로고    scopus 로고
    • Measurement and control of polymerization reactors
    • Richards J.R., Congalidis J.P. Measurement and control of polymerization reactors. Computers & Chemical Engineering 2006, 30(10-12):1447-1463.
    • (2006) Computers & Chemical Engineering , vol.30 , Issue.10-12 , pp. 1447-1463
    • Richards, J.R.1    Congalidis, J.P.2
  • 38
    • 33746991704 scopus 로고    scopus 로고
    • Inferential sensors for estimation of polymer quality parameters: Industrial application of a PLS-based soft sensor for a LDPE plant
    • Sharmin R., Sundararaj U., Shah S., Griend L.V., Sun Y.J. Inferential sensors for estimation of polymer quality parameters: Industrial application of a PLS-based soft sensor for a LDPE plant. Chemical Engineering Science 2006, 61(19):6372-6384.
    • (2006) Chemical Engineering Science , vol.61 , Issue.19 , pp. 6372-6384
    • Sharmin, R.1    Sundararaj, U.2    Shah, S.3    Griend, L.V.4    Sun, Y.J.5
  • 40
    • 33644640862 scopus 로고    scopus 로고
    • Melt index prediction by neural soft-sensor based on multi-scale analysis and principal component analysis
    • Shi J., Liu X.G. Melt index prediction by neural soft-sensor based on multi-scale analysis and principal component analysis. Chinese Journal of Chemical Engineering 2005, 13(6):849-852.
    • (2005) Chinese Journal of Chemical Engineering , vol.13 , Issue.6 , pp. 849-852
    • Shi, J.1    Liu, X.G.2
  • 41
    • 33745166286 scopus 로고    scopus 로고
    • Melt index prediction by weighted least squares support vector machines
    • Shi J., Liu X.G. Melt index prediction by weighted least squares support vector machines. Journal of Applied Polymer Science 2006, 101(1):285-289.
    • (2006) Journal of Applied Polymer Science , vol.101 , Issue.1 , pp. 285-289
    • Shi, J.1    Liu, X.G.2
  • 43
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 2001, 1:211-244.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 44
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Computers & Chemical Engineering 2012, 41(11):134-144.
    • (2012) Computers & Chemical Engineering , vol.41 , Issue.11 , pp. 134-144
    • Yu, J.1
  • 45
    • 84864805251 scopus 로고    scopus 로고
    • Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach
    • Yu J. Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach. Chemical Engineering Science 2012, 82:22-30.
    • (2012) Chemical Engineering Science , vol.82 , pp. 22-30
    • Yu, J.1
  • 46
    • 4444289955 scopus 로고    scopus 로고
    • Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis
    • Zamprogna E., Barolo M., Seborg D.E. Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis. Journal of Process Control 2005, 15(1):39-52.
    • (2005) Journal of Process Control , vol.15 , Issue.1 , pp. 39-52
    • Zamprogna, E.1    Barolo, M.2    Seborg, D.E.3
  • 47
    • 33645798861 scopus 로고    scopus 로고
    • Inferential estimation of polymer melt index using sequentially trained bootstrap aggregated neural networks
    • Zhang J., Jin Q., Xu Y.M. Inferential estimation of polymer melt index using sequentially trained bootstrap aggregated neural networks. Chemical Engineering & Technology 2006, 29(4):442-448.
    • (2006) Chemical Engineering & Technology , vol.29 , Issue.4 , pp. 442-448
    • Zhang, J.1    Jin, Q.2    Xu, Y.M.3
  • 48
    • 76549132623 scopus 로고    scopus 로고
    • Complex process quality prediction using modified kernel partial least squares
    • Zhang Y.W., Teng Y.D., Zhang Y. Complex process quality prediction using modified kernel partial least squares. Chemical Engineering Science 2010, 65:2153-2158.
    • (2010) Chemical Engineering Science , vol.65 , pp. 2153-2158
    • Zhang, Y.W.1    Teng, Y.D.2    Zhang, Y.3
  • 49
    • 77955796384 scopus 로고    scopus 로고
    • An improved independent component regression modeling and quantitative calibration procedure
    • Zhao C.H., Gao F.R., Wang F.L. An improved independent component regression modeling and quantitative calibration procedure. AIChE Journal 2010, 56(6):1519-1535.
    • (2010) AIChE Journal , vol.56 , Issue.6 , pp. 1519-1535
    • Zhao, C.H.1    Gao, F.R.2    Wang, F.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.