메뉴 건너뛰기




Volumn 35, Issue 6, 2011, Pages 1135-1142

Novel soft sensor method for detecting completion of transition in industrial polymer processes

Author keywords

K Nearest neighbor method; One class support vector machine; Range based approach; Soft sensor; Support vector machine; Transition

Indexed keywords

K-NEAREST NEIGHBOR METHOD; ONE-CLASS SUPPORT VECTOR MACHINE; RANGE-BASED APPROACH; SOFT SENSOR; TRANSITION;

EID: 79955476246     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compchemeng.2010.09.003     Document Type: Article
Times cited : (46)

References (16)
  • 1
    • 33750734428 scopus 로고    scopus 로고
    • Comparison of different predictive models for nutrient estimation in a sequencing batch reactor for wastewater treatment
    • Aguado D., Ferrer A., Seco A., Ferrer J. Comparison of different predictive models for nutrient estimation in a sequencing batch reactor for wastewater treatment. Chemometrics and Intelligent Laborary Systems 2006, 84:75-81.
    • (2006) Chemometrics and Intelligent Laborary Systems , vol.84 , pp. 75-81
    • Aguado, D.1    Ferrer, A.2    Seco, A.3    Ferrer, J.4
  • 2
    • 70949095442 scopus 로고    scopus 로고
    • Architecture for development of adaptive on-line prediction models
    • Kadlec P., Gabrys B. Architecture for development of adaptive on-line prediction models. Memetic Computing 2009, 1:241-269.
    • (2009) Memetic Computing , vol.1 , pp. 241-269
    • Kadlec, P.1    Gabrys, B.2
  • 4
    • 58449118276 scopus 로고    scopus 로고
    • Development of a new soft sensor method using independent component analysis and partial least squares
    • Kaneko H., Arakawa M., Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AIChE Journal 2009, 55:87-98.
    • (2009) AIChE Journal , vol.55 , pp. 87-98
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 5
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry
    • Kano M., Nakagawa Y. Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry. Computers & Chemical Engineering 2008, 32:12-24.
    • (2008) Computers & Chemical Engineering , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 6
    • 11844259510 scopus 로고    scopus 로고
    • Clustering-based hybrid soft sensor for an industrial polypropylene process with grade changeover operation
    • Kim M., Lee Y.H., Han I.S., Han C. Clustering-based hybrid soft sensor for an industrial polypropylene process with grade changeover operation. Industrial and Engineering Chemistry Research 2005, 44:334-342.
    • (2005) Industrial and Engineering Chemistry Research , vol.44 , pp. 334-342
    • Kim, M.1    Lee, Y.H.2    Han, I.S.3    Han, C.4
  • 9
    • 0026169941 scopus 로고
    • On-line inference of polymer properties in an industrial polyethylene reactor
    • McAuley K.B., MacGregor F.J. On-line inference of polymer properties in an industrial polyethylene reactor. AIChE Journal 1991, 37:825-835.
    • (1991) AIChE Journal , vol.37 , pp. 825-835
    • McAuley, K.B.1    MacGregor, F.J.2
  • 10
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modelling
    • Qin S.J. Recursive PLS algorithms for adaptive data modelling. Computers & Chemical Engineering 1998, 22:503-514.
    • (1998) Computers & Chemical Engineering , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 11
    • 0031139929 scopus 로고    scopus 로고
    • Self-validating inferential sensors with application to air emission monitoring
    • Qin S.J., Yue H.Y., Dunia R. Self-validating inferential sensors with application to air emission monitoring. Industrial and Engineering Chemistry Research 1997, 36:1675-1685.
    • (1997) Industrial and Engineering Chemistry Research , vol.36 , pp. 1675-1685
    • Qin, S.J.1    Yue, H.Y.2    Dunia, R.3
  • 13
  • 15
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan W.W., Shao H.H., Wang X.F. Soft sensing modeling based on support vector machine and Bayesian model selection. Computers & Chemical Engineering 2004, 28:1489-1498.
    • (2004) Computers & Chemical Engineering , vol.28 , pp. 1489-1498
    • Yan, W.W.1    Shao, H.H.2    Wang, X.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.