-
1
-
-
0026169941
-
On-Line Inference of Polymer Properties in An Industrial Polyethylene Reactor
-
McAuley, K. B.; MacGregor, J. F. On-Line Inference of Polymer Properties in An Industrial Polyethylene Reactor AIChE J. 1991, 37, 825-835
-
(1991)
AIChE J.
, vol.37
, pp. 825-835
-
-
McAuley, K.B.1
MacGregor, J.F.2
-
2
-
-
84863210322
-
-
Presented in AIChE Annual Meeting, St Louis, MO, USA, Nov. 7-12.
-
Watanabe, F.; Ogawa, M.; Obshima, M.; Hasbimoto, I. Quality Control System for an Industrial High-Density Polyethylene Process. Presented in AIChE Annual Meeting, St Louis, MO, USA, Nov. 7-12, 1993.
-
(1993)
Quality Control System for An Industrial High-Density Polyethylene Process
-
-
Watanabe, F.1
Ogawa, M.2
Obshima, M.3
Hasbimoto, I.4
-
3
-
-
0033079980
-
Quality Inferential Control of an Industrial High Density Polyethylene Process
-
Ogawa, M.; Ohshima, M.; Morinaga, K.; Watanabe, F. Quality Inferential Control of an Industrial High Density Polyethylene Process J. Process Control 1999, 9, 51-59
-
(1999)
J. Process Control
, vol.9
, pp. 51-59
-
-
Ogawa, M.1
Ohshima, M.2
Morinaga, K.3
Watanabe, F.4
-
4
-
-
52349101213
-
Prediction and Quality Control of the Melt Index during Production of High-Density Polyethylene
-
Lee, E. H.; Kim, T. Y.; Yeo, Y. K. Prediction and Quality Control of The Melt Index During Production of High-Density Polyethylene Korean J. Chem. Eng. 2008, 25, 613-622
-
(2008)
Korean J. Chem. Eng.
, vol.25
, pp. 613-622
-
-
Lee, E.H.1
Kim, T.Y.2
Yeo, Y.K.3
-
5
-
-
0033874542
-
Quality Control of Polymer Production Processes
-
Ohshima, M.; Tanigaki, M. Quality Control of Polymer Production Processes J. Process Control 2000, 10, 135-148
-
(2000)
J. Process Control
, vol.10
, pp. 135-148
-
-
Ohshima, M.1
Tanigaki, M.2
-
6
-
-
33644640862
-
Melt Index Prediction by Neural Soft-sensor Based on Multiscale Analysis and Principal Component Analysis
-
Shi, J.; Liu, X. G. Melt Index Prediction by Neural Soft-sensor Based on Multiscale Analysis and Principal Component Analysis Chin. J. Chem. Eng. 2005, 13, 849-852
-
(2005)
Chin. J. Chem. Eng.
, vol.13
, pp. 849-852
-
-
Shi, J.1
Liu, X.G.2
-
7
-
-
33750321050
-
Melt Index Prediction by Neural Networks Based on Independent Component Analysis and Multiscale Analysis
-
Shi, J.; Liu, X. G.; Sun, Y. X. Melt Index Prediction By Neural Networks Based on Independent Component Analysis and Multiscale Analysis Neurocomputing 2006, 70, 280-287
-
(2006)
Neurocomputing
, vol.70
, pp. 280-287
-
-
Shi, J.1
Liu, X.G.2
Sun, Y.X.3
-
8
-
-
78650720100
-
Melt Index Prediction by RBF Neural Network Optimized with an MPSO-SA Hybrid Algorithm
-
Li, J. B.; Liu, X. G. Melt Index Prediction by RBF Neural Network Optimized with an MPSO-SA Hybrid Algorithm Neurocomputing 2011, 74, 735-740
-
(2011)
Neurocomputing
, vol.74
, pp. 735-740
-
-
Li, J.B.1
Liu, X.G.2
-
9
-
-
33751025105
-
Automated Product Grade Transitions, Exposing the Inherent and Latent Dangers of Neural Networks in Manufacturing Process Control-An Industrial Case Study
-
Turner, P. Automated Product Grade Transitions, Exposing The Inherent and Latent Dangers of Neural Networks in Manufacturing Process Control-An Industrial Case Study Neural Comput. Applic. 2007, 16, 27-32
-
(2007)
Neural Comput. Applic.
, vol.16
, pp. 27-32
-
-
Turner, P.1
-
10
-
-
67349089877
-
Data-Driven Soft Sensors in the Process Industry
-
Kadleca, P.; Gabrys, B.; Strandtb, S. Data-Driven Soft Sensors in the Process Industry Comput. Chem. Eng. 2009, 33, 795-814
-
(2009)
Comput. Chem. Eng.
, vol.33
, pp. 795-814
-
-
Kadleca, P.1
Gabrys, B.2
Strandtb, S.3
-
11
-
-
0033691089
-
Hybrid Modelling of Biotechnological Processes Using Neural Networks
-
Chen, L.; Bernard, O.; Bastin, G.; Angelov, P. Hybrid Modelling of Biotechnological Processes Using Neural Networks Control Eng. Practice 2000, 8, 821-827
-
(2000)
Control Eng. Practice
, vol.8
, pp. 821-827
-
-
Chen, L.1
Bernard, O.2
Bastin, G.3
Angelov, P.4
-
12
-
-
11144284581
-
Soft Sensors for Product Quality Monitoring in Debutanizer Distillation Columns
-
Fortuna, L.; Graziani, S.; Xibilia, M. G. Soft Sensors for Product Quality Monitoring in Debutanizer Distillation Columns Control Eng. Practice 2005, 13, 499-508
-
(2005)
Control Eng. Practice
, vol.13
, pp. 499-508
-
-
Fortuna, L.1
Graziani, S.2
Xibilia, M.G.3
-
13
-
-
0036131934
-
Comparative Study of Black-Box and Hybrid Estimation Methods in Fed-Batch Fermentation
-
James, S.; Legge, R.; Budman, H. Comparative Study of Black-Box and Hybrid Estimation Methods in Fed-Batch Fermentation J.Process Control 2002, 12, 113-121
-
(2002)
J.Process Control
, vol.12
, pp. 113-121
-
-
James, S.1
Legge, R.2
Budman, H.3
-
14
-
-
0035111799
-
An Estimation Scheme Combining First Principle Knowledge, Neural Networks, and the Likelihood Function
-
Vilim, R. B.; Garcia, H. E.; Chen, F. W. An Estimation Scheme Combining First Principle Knowledge, Neural Networks, and the Likelihood Function IEEE Trans. Control Syst. Technol. 2001, 9, 186-199
-
(2001)
IEEE Trans. Control Syst. Technol.
, vol.9
, pp. 186-199
-
-
Vilim, R.B.1
Garcia, H.E.2
Chen, F.W.3
-
15
-
-
0037699059
-
Using Hybrid Neural Networks in Scaling up an FCC Model from a Pilot Plant to an Industrial Unit
-
Bollas, G. M.; Papadokonstadakis, S.; Michalopoulos, J. Using Hybrid Neural Networks in Scaling up an FCC Model from a Pilot Plant to an Industrial Unit Chem. Eng. Process 2003, 42, 697-713
-
(2003)
Chem. Eng. Process
, vol.42
, pp. 697-713
-
-
Bollas, G.M.1
Papadokonstadakis, S.2
Michalopoulos, J.3
-
16
-
-
0345790334
-
Hybrid Neural Network-Prior Knowledge Model in Temperature Control of a Semi-batch Polymerization Process
-
Ng, C. W.; Hussain, M. A. Hybrid Neural Network-Prior Knowledge Model in Temperature Control of a Semi-batch Polymerization Process Chem. Eng. Process 2004, 43, 559-570
-
(2004)
Chem. Eng. Process
, vol.43
, pp. 559-570
-
-
Ng, C.W.1
Hussain, M.A.2
-
17
-
-
11844259510
-
Clustering-Based Hybrid Soft Sensor for a Polypropylene Process with Grade Changeover Operation
-
Kim, M.; Lee, Y. H.; Han, I. S.; Han, C. Clustering-Based Hybrid Soft Sensor for a Polypropylene Process with Grade Changeover Operation Ind. Eng. Chem. Res. 2005, 44, 34-42
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 34-42
-
-
Kim, M.1
Lee, Y.H.2
Han, I.S.3
Han, C.4
-
18
-
-
58149463469
-
The Weight-Decay Technique in Learning from Data An Optimization Point of View
-
Gnecco, G.; Sanguineti, M. The Weight-Decay Technique in Learning From Data An Optimization Point of View Comput. Manage. Sci 2009, 6, 53-79
-
(2009)
Comput. Manage. Sci
, vol.6
, pp. 53-79
-
-
Gnecco, G.1
Sanguineti, M.2
-
19
-
-
77950297986
-
Comparison of Universal Approximators Incorporating Partial Monotonicity by Structure
-
Minina, A.; Velikova, M. Comparison of Universal Approximators Incorporating Partial Monotonicity by Structure Neural Networks 2010, 23, 471-475
-
(2010)
Neural Networks
, vol.23
, pp. 471-475
-
-
Minina, A.1
Velikova, M.2
-
20
-
-
64549090645
-
A Hybrid Learning Algorithm for a Class of Interval Type-2 Fuzzy Neural Networks
-
Castro, J. R.; Castillo, O.; Melin, P.; Antonio, R. D. A Hybrid Learning Algorithm for a Class of Interval Type-2 Fuzzy Neural Networks Inform. Science 2009, 179, 2175-2193
-
(2009)
Inform. Science
, vol.179
, pp. 2175-2193
-
-
Castro, J.R.1
Castillo, O.2
Melin, P.3
Antonio, R.D.4
-
21
-
-
79956107266
-
Constrained Structural Design Optimization via a Parallel Augmented Lagrangian Particle Swarm Optimization Approach
-
Jansen, P. W.; Perez, R. E. Constrained Structural Design Optimization via a Parallel Augmented Lagrangian Particle Swarm Optimization Approach Comput. Struct. 2011, 89, 1352-1366
-
(2011)
Comput. Struct.
, vol.89
, pp. 1352-1366
-
-
Jansen, P.W.1
Perez, R.E.2
-
22
-
-
0037016631
-
Theoretical and Numerical Constraint-Handling Techniques Used with Evolutionary Algorithms-A Survey of the State of the Art
-
Coello, C. C. Theoretical and Numerical Constraint-Handling Techniques Used with Evolutionary Algorithms-A Survey of The State of The Art Comput. Methods Appl. Mech. Eng. 2002, 191, 1245-1287
-
(2002)
Comput. Methods Appl. Mech. Eng.
, vol.191
, pp. 1245-1287
-
-
Coello, C.C.1
-
23
-
-
53749099091
-
Particle Swarm Optimization with Adaptive Population Size and Its Application
-
Chen, D.; Zhao, C. Particle Swarm Optimization with Adaptive Population Size and Its Application Appl. Soft Comput. 2009, 9, 39-48
-
(2009)
Appl. Soft Comput.
, vol.9
, pp. 39-48
-
-
Chen, D.1
Zhao, C.2
-
24
-
-
38949186067
-
Nonlinear Parameter Estimation through Particle Swarm Optimization
-
Schwaab, M.; Biscaia, E. C., Jr.; José, L. M.; Pinto, J. C. Nonlinear Parameter Estimation through Particle Swarm Optimization Chem. Eng. Sci. 2008, 63, 1542-1552
-
(2008)
Chem. Eng. Sci.
, vol.63
, pp. 1542-1552
-
-
Schwaab, M.1
Biscaia Jr., E.C.2
José, L.M.3
Pinto, J.C.4
-
25
-
-
78049529720
-
Parameters Identification of Unknown Delayed Genetic Regulatory Networks by a Switching Particle Swarm Optimization Algorithm
-
Tang, Y.; Wang, Z.; Fang, J. Parameters Identification of Unknown Delayed Genetic Regulatory Networks by a Switching Particle Swarm Optimization Algorithm Expert Syst.Appl. 2011, 38, 2523-2535
-
(2011)
Expert Syst.Appl.
, vol.38
, pp. 2523-2535
-
-
Tang, Y.1
Wang, Z.2
Fang, J.3
-
26
-
-
33645798861
-
Inferential Estimation of Polymer Melt Index Using Sequentially Trained Bootstrap Aggregated Neural Networks
-
Zhang, B. J.; Jin, Q.; Xu, Y. Inferential Estimation of Polymer Melt Index Using Sequentially Trained Bootstrap Aggregated Neural Networks Chem. Eng. Technol. 2006, 29, 442-448
-
(2006)
Chem. Eng. Technol.
, vol.29
, pp. 442-448
-
-
Zhang, B.J.1
Jin, Q.2
Xu, Y.3
-
28
-
-
59849122121
-
Applications of Information Theory, Genetic Algorithms, and Neural Models to Predict Oil Flow
-
Ludwig, O., Jr.; Nunes, U.; Araújo, R.; Schnitman, L.; Lepikson, H. A. Applications of Information Theory, Genetic Algorithms, and Neural Models To Predict Oil Flow Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2870-2885
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, pp. 2870-2885
-
-
Ludwig Jr., O.1
Nunes, U.2
Araújo, R.3
Schnitman, L.4
Lepikson, H.A.5
-
29
-
-
33847342949
-
High-Dimensional Delay Selection for Regression Models with Mutual Information and Distance-to-Diagonal Criteria
-
Simon, G.; Verleysen, M. High-Dimensional Delay Selection for Regression Models with Mutual Information and Distance-to-Diagonal Criteria Neurocomputing 2007, 70, 1265-1275
-
(2007)
Neurocomputing
, vol.70
, pp. 1265-1275
-
-
Simon, G.1
Verleysen, M.2
-
30
-
-
0035890848
-
Wavelet-Based Robust Filtering of Process Data
-
Doymaz, F.; Bakhtazad, A.; Romagnoli, J. A.; Palazoglu, A. Wavelet-Based Robust Filtering of Process Data Comput. Chem. Eng. 2001, 25, 1549-1559
-
(2001)
Comput. Chem. Eng.
, vol.25
, pp. 1549-1559
-
-
Doymaz, F.1
Bakhtazad, A.2
Romagnoli, J.A.3
Palazoglu, A.4
-
31
-
-
33847162850
-
A Systematic Approach for Soft Sensor Development
-
Lin, B.; Recke, B. K.; J́rgen, K. H.; J́rgensen, S. B. A Systematic Approach for Soft Sensor Development Comput. Chem. Eng. 2007, 31, 419-425
-
(2007)
Comput. Chem. Eng.
, vol.31
, pp. 419-425
-
-
Lin, B.1
Recke, B.K.2
J́rgen, K.H.3
J́rgensen, S.B.4
-
32
-
-
0037411806
-
Exploring Process Data with the Use of Robust Outlier Detection Algorithms
-
Chiang, L. H.; Pell, R. J.; Seasholtz, M. B. Exploring Process Data with the Use of Robust Outlier Detection Algorithms J. Process Control 2003, 13, 437-449
-
(2003)
J. Process Control
, vol.13
, pp. 437-449
-
-
Chiang, L.H.1
Pell, R.J.2
Seasholtz, M.B.3
-
33
-
-
84859392648
-
A Bayesian Inference Based Two-Stage Support Vector Regression Framework for Soft Sensor Development in Batch Bioprocesses
-
Yu, J. A Bayesian Inference Based Two-Stage Support Vector Regression Framework for Soft Sensor Development in Batch Bioprocesses Comput. Chem. Eng. 2012, 41, 134-144
-
(2012)
Comput. Chem. Eng.
, vol.41
, pp. 134-144
-
-
Yu, J.1
-
34
-
-
37349082410
-
A New Model Selection Strategy in Artificial Neural Networks
-
EgRiogLu, E.; Aladag, C. A. D. H.; Nay, S. L. G. A New Model Selection Strategy in Artificial Neural Networks Appl. Math. Comput. 2008, 195, 591-597
-
(2008)
Appl. Math. Comput.
, vol.195
, pp. 591-597
-
-
Egrioglu, E.1
Aladag, C.A.D.H.2
Nay, S.L.G.3
-
35
-
-
0032638628
-
Least Squares Support Vector Machines Classifiers
-
Suykens, J. A. K.; Vandewalle, J. Least Squares Support Vector Machines Classifiers Neural Network Lett. 1999, 19, 293-300
-
(1999)
Neural Network Lett.
, vol.19
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
36
-
-
2342567014
-
Soft Sensing Modeling Based on Support Vector Machine and Bayesian Model Selection
-
Yan, W.; Shao, H.; Wang, X. F. Soft Sensing Modeling Based on Support Vector Machine and Bayesian Model Selection Comput. Chem. Eng. 2004, 28, 1489-1498
-
(2004)
Comput. Chem. Eng.
, vol.28
, pp. 1489-1498
-
-
Yan, W.1
Shao, H.2
Wang, X.F.3
-
37
-
-
81055156706
-
A Nonlinear Kernel Gaussian Mixture Model Based Inferential Monitoring Approach for Fault Detection and Diagnosis of Chemical Processes
-
Yu, J. A Nonlinear Kernel Gaussian Mixture Model Based Inferential Monitoring Approach for Fault Detection and Diagnosis of Chemical Processes Chem. Eng. Sci. 2012, 68, 506-519
-
(2012)
Chem. Eng. Sci.
, vol.68
, pp. 506-519
-
-
Yu, J.1
-
38
-
-
47549099484
-
Multimode Process Monitoring with Bayesian Inference-Based Finite Gaussian Mixture Models
-
Yu, J.; Qin, S. J. Multimode Process Monitoring with Bayesian Inference-Based Finite Gaussian Mixture Models AIChE J. 2008, 54, 1811-1829
-
(2008)
AIChE J.
, vol.54
, pp. 1811-1829
-
-
Yu, J.1
Qin, S.J.2
-
39
-
-
58249091983
-
A Methodology for Sequencing Batch Reactor Identification with Artificial Neural Networks: A Case Study
-
Aguado, D.; Ribes, J.; Montoya, T.; Ferrer, J.; Seco, A. A Methodology for Sequencing Batch Reactor Identification with Artificial Neural Networks: A Case Study Comput. Chem. Eng. 2009, 33, 465-472
-
(2009)
Comput. Chem. Eng.
, vol.33
, pp. 465-472
-
-
Aguado, D.1
Ribes, J.2
Montoya, T.3
Ferrer, J.4
Seco, A.5
-
40
-
-
57049112694
-
ANN-Based Soft-Sensor for Real-Time Process Monitoring and Control of An Industrial Polymerization Process
-
Gonzaga, J. C. B.; Meleiro, L. A. C.; Kiang, C.; Filho, R. M. ANN-Based Soft-Sensor for Real-Time Process Monitoring and Control of An Industrial Polymerization Process Comput. Chem. Eng. 2009, 33, 43-49
-
(2009)
Comput. Chem. Eng.
, vol.33
, pp. 43-49
-
-
Gonzaga, J.C.B.1
Meleiro, L.A.C.2
Kiang, C.3
Filho, R.M.4
|