메뉴 건너뛰기




Volumn 51, Issue 25, 2012, Pages 8510-8525

Inferential model for industrial polypropylene melt index prediction with embedded priori knowledge and delay estimation

Author keywords

[No Author keywords available]

Indexed keywords

CONTROL AND OPTIMIZATION; DELAY ESTIMATION; DEPENDENT VARIABLES; DOUBLE-LOOP; HYBRID MODEL; INDEPENDENT VARIABLES; INFERENTIAL MODELS; MECHANISM MODEL; MELT INDEX; MODEL GAIN; MULTI-LAYER PERCEPTRON NEURAL NETWORKS; NETWORK WEIGHTS; NON-LINEAR CONSTRAINTS; NORMALIZED MUTUAL INFORMATION; PARTICLE SWARM; POLYPROPYLENE MELTS; PRIOR KNOWLEDGE; PRIORI KNOWLEDGE; PROPYLENE POLYMERIZATION; REACTION PROCESS; ZERO VALUES;

EID: 84863191342     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie202901v     Document Type: Article
Times cited : (40)

References (40)
  • 1
    • 0026169941 scopus 로고
    • On-Line Inference of Polymer Properties in An Industrial Polyethylene Reactor
    • McAuley, K. B.; MacGregor, J. F. On-Line Inference of Polymer Properties in An Industrial Polyethylene Reactor AIChE J. 1991, 37, 825-835
    • (1991) AIChE J. , vol.37 , pp. 825-835
    • McAuley, K.B.1    MacGregor, J.F.2
  • 3
    • 0033079980 scopus 로고    scopus 로고
    • Quality Inferential Control of an Industrial High Density Polyethylene Process
    • Ogawa, M.; Ohshima, M.; Morinaga, K.; Watanabe, F. Quality Inferential Control of an Industrial High Density Polyethylene Process J. Process Control 1999, 9, 51-59
    • (1999) J. Process Control , vol.9 , pp. 51-59
    • Ogawa, M.1    Ohshima, M.2    Morinaga, K.3    Watanabe, F.4
  • 4
    • 52349101213 scopus 로고    scopus 로고
    • Prediction and Quality Control of the Melt Index during Production of High-Density Polyethylene
    • Lee, E. H.; Kim, T. Y.; Yeo, Y. K. Prediction and Quality Control of The Melt Index During Production of High-Density Polyethylene Korean J. Chem. Eng. 2008, 25, 613-622
    • (2008) Korean J. Chem. Eng. , vol.25 , pp. 613-622
    • Lee, E.H.1    Kim, T.Y.2    Yeo, Y.K.3
  • 5
    • 0033874542 scopus 로고    scopus 로고
    • Quality Control of Polymer Production Processes
    • Ohshima, M.; Tanigaki, M. Quality Control of Polymer Production Processes J. Process Control 2000, 10, 135-148
    • (2000) J. Process Control , vol.10 , pp. 135-148
    • Ohshima, M.1    Tanigaki, M.2
  • 6
    • 33644640862 scopus 로고    scopus 로고
    • Melt Index Prediction by Neural Soft-sensor Based on Multiscale Analysis and Principal Component Analysis
    • Shi, J.; Liu, X. G. Melt Index Prediction by Neural Soft-sensor Based on Multiscale Analysis and Principal Component Analysis Chin. J. Chem. Eng. 2005, 13, 849-852
    • (2005) Chin. J. Chem. Eng. , vol.13 , pp. 849-852
    • Shi, J.1    Liu, X.G.2
  • 7
    • 33750321050 scopus 로고    scopus 로고
    • Melt Index Prediction by Neural Networks Based on Independent Component Analysis and Multiscale Analysis
    • Shi, J.; Liu, X. G.; Sun, Y. X. Melt Index Prediction By Neural Networks Based on Independent Component Analysis and Multiscale Analysis Neurocomputing 2006, 70, 280-287
    • (2006) Neurocomputing , vol.70 , pp. 280-287
    • Shi, J.1    Liu, X.G.2    Sun, Y.X.3
  • 8
    • 78650720100 scopus 로고    scopus 로고
    • Melt Index Prediction by RBF Neural Network Optimized with an MPSO-SA Hybrid Algorithm
    • Li, J. B.; Liu, X. G. Melt Index Prediction by RBF Neural Network Optimized with an MPSO-SA Hybrid Algorithm Neurocomputing 2011, 74, 735-740
    • (2011) Neurocomputing , vol.74 , pp. 735-740
    • Li, J.B.1    Liu, X.G.2
  • 9
    • 33751025105 scopus 로고    scopus 로고
    • Automated Product Grade Transitions, Exposing the Inherent and Latent Dangers of Neural Networks in Manufacturing Process Control-An Industrial Case Study
    • Turner, P. Automated Product Grade Transitions, Exposing The Inherent and Latent Dangers of Neural Networks in Manufacturing Process Control-An Industrial Case Study Neural Comput. Applic. 2007, 16, 27-32
    • (2007) Neural Comput. Applic. , vol.16 , pp. 27-32
    • Turner, P.1
  • 10
    • 67349089877 scopus 로고    scopus 로고
    • Data-Driven Soft Sensors in the Process Industry
    • Kadleca, P.; Gabrys, B.; Strandtb, S. Data-Driven Soft Sensors in the Process Industry Comput. Chem. Eng. 2009, 33, 795-814
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadleca, P.1    Gabrys, B.2    Strandtb, S.3
  • 11
    • 0033691089 scopus 로고    scopus 로고
    • Hybrid Modelling of Biotechnological Processes Using Neural Networks
    • Chen, L.; Bernard, O.; Bastin, G.; Angelov, P. Hybrid Modelling of Biotechnological Processes Using Neural Networks Control Eng. Practice 2000, 8, 821-827
    • (2000) Control Eng. Practice , vol.8 , pp. 821-827
    • Chen, L.1    Bernard, O.2    Bastin, G.3    Angelov, P.4
  • 12
    • 11144284581 scopus 로고    scopus 로고
    • Soft Sensors for Product Quality Monitoring in Debutanizer Distillation Columns
    • Fortuna, L.; Graziani, S.; Xibilia, M. G. Soft Sensors for Product Quality Monitoring in Debutanizer Distillation Columns Control Eng. Practice 2005, 13, 499-508
    • (2005) Control Eng. Practice , vol.13 , pp. 499-508
    • Fortuna, L.1    Graziani, S.2    Xibilia, M.G.3
  • 13
    • 0036131934 scopus 로고    scopus 로고
    • Comparative Study of Black-Box and Hybrid Estimation Methods in Fed-Batch Fermentation
    • James, S.; Legge, R.; Budman, H. Comparative Study of Black-Box and Hybrid Estimation Methods in Fed-Batch Fermentation J.Process Control 2002, 12, 113-121
    • (2002) J.Process Control , vol.12 , pp. 113-121
    • James, S.1    Legge, R.2    Budman, H.3
  • 14
    • 0035111799 scopus 로고    scopus 로고
    • An Estimation Scheme Combining First Principle Knowledge, Neural Networks, and the Likelihood Function
    • Vilim, R. B.; Garcia, H. E.; Chen, F. W. An Estimation Scheme Combining First Principle Knowledge, Neural Networks, and the Likelihood Function IEEE Trans. Control Syst. Technol. 2001, 9, 186-199
    • (2001) IEEE Trans. Control Syst. Technol. , vol.9 , pp. 186-199
    • Vilim, R.B.1    Garcia, H.E.2    Chen, F.W.3
  • 15
    • 0037699059 scopus 로고    scopus 로고
    • Using Hybrid Neural Networks in Scaling up an FCC Model from a Pilot Plant to an Industrial Unit
    • Bollas, G. M.; Papadokonstadakis, S.; Michalopoulos, J. Using Hybrid Neural Networks in Scaling up an FCC Model from a Pilot Plant to an Industrial Unit Chem. Eng. Process 2003, 42, 697-713
    • (2003) Chem. Eng. Process , vol.42 , pp. 697-713
    • Bollas, G.M.1    Papadokonstadakis, S.2    Michalopoulos, J.3
  • 16
    • 0345790334 scopus 로고    scopus 로고
    • Hybrid Neural Network-Prior Knowledge Model in Temperature Control of a Semi-batch Polymerization Process
    • Ng, C. W.; Hussain, M. A. Hybrid Neural Network-Prior Knowledge Model in Temperature Control of a Semi-batch Polymerization Process Chem. Eng. Process 2004, 43, 559-570
    • (2004) Chem. Eng. Process , vol.43 , pp. 559-570
    • Ng, C.W.1    Hussain, M.A.2
  • 17
    • 11844259510 scopus 로고    scopus 로고
    • Clustering-Based Hybrid Soft Sensor for a Polypropylene Process with Grade Changeover Operation
    • Kim, M.; Lee, Y. H.; Han, I. S.; Han, C. Clustering-Based Hybrid Soft Sensor for a Polypropylene Process with Grade Changeover Operation Ind. Eng. Chem. Res. 2005, 44, 34-42
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 34-42
    • Kim, M.1    Lee, Y.H.2    Han, I.S.3    Han, C.4
  • 18
    • 58149463469 scopus 로고    scopus 로고
    • The Weight-Decay Technique in Learning from Data An Optimization Point of View
    • Gnecco, G.; Sanguineti, M. The Weight-Decay Technique in Learning From Data An Optimization Point of View Comput. Manage. Sci 2009, 6, 53-79
    • (2009) Comput. Manage. Sci , vol.6 , pp. 53-79
    • Gnecco, G.1    Sanguineti, M.2
  • 19
    • 77950297986 scopus 로고    scopus 로고
    • Comparison of Universal Approximators Incorporating Partial Monotonicity by Structure
    • Minina, A.; Velikova, M. Comparison of Universal Approximators Incorporating Partial Monotonicity by Structure Neural Networks 2010, 23, 471-475
    • (2010) Neural Networks , vol.23 , pp. 471-475
    • Minina, A.1    Velikova, M.2
  • 20
    • 64549090645 scopus 로고    scopus 로고
    • A Hybrid Learning Algorithm for a Class of Interval Type-2 Fuzzy Neural Networks
    • Castro, J. R.; Castillo, O.; Melin, P.; Antonio, R. D. A Hybrid Learning Algorithm for a Class of Interval Type-2 Fuzzy Neural Networks Inform. Science 2009, 179, 2175-2193
    • (2009) Inform. Science , vol.179 , pp. 2175-2193
    • Castro, J.R.1    Castillo, O.2    Melin, P.3    Antonio, R.D.4
  • 21
    • 79956107266 scopus 로고    scopus 로고
    • Constrained Structural Design Optimization via a Parallel Augmented Lagrangian Particle Swarm Optimization Approach
    • Jansen, P. W.; Perez, R. E. Constrained Structural Design Optimization via a Parallel Augmented Lagrangian Particle Swarm Optimization Approach Comput. Struct. 2011, 89, 1352-1366
    • (2011) Comput. Struct. , vol.89 , pp. 1352-1366
    • Jansen, P.W.1    Perez, R.E.2
  • 22
    • 0037016631 scopus 로고    scopus 로고
    • Theoretical and Numerical Constraint-Handling Techniques Used with Evolutionary Algorithms-A Survey of the State of the Art
    • Coello, C. C. Theoretical and Numerical Constraint-Handling Techniques Used with Evolutionary Algorithms-A Survey of The State of The Art Comput. Methods Appl. Mech. Eng. 2002, 191, 1245-1287
    • (2002) Comput. Methods Appl. Mech. Eng. , vol.191 , pp. 1245-1287
    • Coello, C.C.1
  • 23
    • 53749099091 scopus 로고    scopus 로고
    • Particle Swarm Optimization with Adaptive Population Size and Its Application
    • Chen, D.; Zhao, C. Particle Swarm Optimization with Adaptive Population Size and Its Application Appl. Soft Comput. 2009, 9, 39-48
    • (2009) Appl. Soft Comput. , vol.9 , pp. 39-48
    • Chen, D.1    Zhao, C.2
  • 24
    • 38949186067 scopus 로고    scopus 로고
    • Nonlinear Parameter Estimation through Particle Swarm Optimization
    • Schwaab, M.; Biscaia, E. C., Jr.; José, L. M.; Pinto, J. C. Nonlinear Parameter Estimation through Particle Swarm Optimization Chem. Eng. Sci. 2008, 63, 1542-1552
    • (2008) Chem. Eng. Sci. , vol.63 , pp. 1542-1552
    • Schwaab, M.1    Biscaia Jr., E.C.2    José, L.M.3    Pinto, J.C.4
  • 25
    • 78049529720 scopus 로고    scopus 로고
    • Parameters Identification of Unknown Delayed Genetic Regulatory Networks by a Switching Particle Swarm Optimization Algorithm
    • Tang, Y.; Wang, Z.; Fang, J. Parameters Identification of Unknown Delayed Genetic Regulatory Networks by a Switching Particle Swarm Optimization Algorithm Expert Syst.Appl. 2011, 38, 2523-2535
    • (2011) Expert Syst.Appl. , vol.38 , pp. 2523-2535
    • Tang, Y.1    Wang, Z.2    Fang, J.3
  • 26
    • 33645798861 scopus 로고    scopus 로고
    • Inferential Estimation of Polymer Melt Index Using Sequentially Trained Bootstrap Aggregated Neural Networks
    • Zhang, B. J.; Jin, Q.; Xu, Y. Inferential Estimation of Polymer Melt Index Using Sequentially Trained Bootstrap Aggregated Neural Networks Chem. Eng. Technol. 2006, 29, 442-448
    • (2006) Chem. Eng. Technol. , vol.29 , pp. 442-448
    • Zhang, B.J.1    Jin, Q.2    Xu, Y.3
  • 29
    • 33847342949 scopus 로고    scopus 로고
    • High-Dimensional Delay Selection for Regression Models with Mutual Information and Distance-to-Diagonal Criteria
    • Simon, G.; Verleysen, M. High-Dimensional Delay Selection for Regression Models with Mutual Information and Distance-to-Diagonal Criteria Neurocomputing 2007, 70, 1265-1275
    • (2007) Neurocomputing , vol.70 , pp. 1265-1275
    • Simon, G.1    Verleysen, M.2
  • 32
    • 0037411806 scopus 로고    scopus 로고
    • Exploring Process Data with the Use of Robust Outlier Detection Algorithms
    • Chiang, L. H.; Pell, R. J.; Seasholtz, M. B. Exploring Process Data with the Use of Robust Outlier Detection Algorithms J. Process Control 2003, 13, 437-449
    • (2003) J. Process Control , vol.13 , pp. 437-449
    • Chiang, L.H.1    Pell, R.J.2    Seasholtz, M.B.3
  • 33
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian Inference Based Two-Stage Support Vector Regression Framework for Soft Sensor Development in Batch Bioprocesses
    • Yu, J. A Bayesian Inference Based Two-Stage Support Vector Regression Framework for Soft Sensor Development in Batch Bioprocesses Comput. Chem. Eng. 2012, 41, 134-144
    • (2012) Comput. Chem. Eng. , vol.41 , pp. 134-144
    • Yu, J.1
  • 34
    • 37349082410 scopus 로고    scopus 로고
    • A New Model Selection Strategy in Artificial Neural Networks
    • EgRiogLu, E.; Aladag, C. A. D. H.; Nay, S. L. G. A New Model Selection Strategy in Artificial Neural Networks Appl. Math. Comput. 2008, 195, 591-597
    • (2008) Appl. Math. Comput. , vol.195 , pp. 591-597
    • Egrioglu, E.1    Aladag, C.A.D.H.2    Nay, S.L.G.3
  • 35
    • 0032638628 scopus 로고    scopus 로고
    • Least Squares Support Vector Machines Classifiers
    • Suykens, J. A. K.; Vandewalle, J. Least Squares Support Vector Machines Classifiers Neural Network Lett. 1999, 19, 293-300
    • (1999) Neural Network Lett. , vol.19 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 36
    • 2342567014 scopus 로고    scopus 로고
    • Soft Sensing Modeling Based on Support Vector Machine and Bayesian Model Selection
    • Yan, W.; Shao, H.; Wang, X. F. Soft Sensing Modeling Based on Support Vector Machine and Bayesian Model Selection Comput. Chem. Eng. 2004, 28, 1489-1498
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.F.3
  • 37
    • 81055156706 scopus 로고    scopus 로고
    • A Nonlinear Kernel Gaussian Mixture Model Based Inferential Monitoring Approach for Fault Detection and Diagnosis of Chemical Processes
    • Yu, J. A Nonlinear Kernel Gaussian Mixture Model Based Inferential Monitoring Approach for Fault Detection and Diagnosis of Chemical Processes Chem. Eng. Sci. 2012, 68, 506-519
    • (2012) Chem. Eng. Sci. , vol.68 , pp. 506-519
    • Yu, J.1
  • 38
    • 47549099484 scopus 로고    scopus 로고
    • Multimode Process Monitoring with Bayesian Inference-Based Finite Gaussian Mixture Models
    • Yu, J.; Qin, S. J. Multimode Process Monitoring with Bayesian Inference-Based Finite Gaussian Mixture Models AIChE J. 2008, 54, 1811-1829
    • (2008) AIChE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 39
    • 58249091983 scopus 로고    scopus 로고
    • A Methodology for Sequencing Batch Reactor Identification with Artificial Neural Networks: A Case Study
    • Aguado, D.; Ribes, J.; Montoya, T.; Ferrer, J.; Seco, A. A Methodology for Sequencing Batch Reactor Identification with Artificial Neural Networks: A Case Study Comput. Chem. Eng. 2009, 33, 465-472
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 465-472
    • Aguado, D.1    Ribes, J.2    Montoya, T.3    Ferrer, J.4    Seco, A.5
  • 40
    • 57049112694 scopus 로고    scopus 로고
    • ANN-Based Soft-Sensor for Real-Time Process Monitoring and Control of An Industrial Polymerization Process
    • Gonzaga, J. C. B.; Meleiro, L. A. C.; Kiang, C.; Filho, R. M. ANN-Based Soft-Sensor for Real-Time Process Monitoring and Control of An Industrial Polymerization Process Comput. Chem. Eng. 2009, 33, 43-49
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 43-49
    • Gonzaga, J.C.B.1    Meleiro, L.A.C.2    Kiang, C.3    Filho, R.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.