메뉴 건너뛰기




Volumn 88, Issue 5, 2010, Pages 696-709

Application of support vector regression for developing soft sensors for nonlinear processes

Author keywords

Polymer extrusion; Soft sensor; Support vector regression; System identification

Indexed keywords

APPROXIMATION CAPABILITIES; ARX MODEL; BASIC IDEA; BLACK-BOX MODEL; COMPUTATIONAL TOOLS; COST-EFFICIENT; ETHYLENE VINYL ACETATES; FEATURE SPACE; GENERALISATION; HARDWARE SENSORS; HEURISTIC PROCEDURES; HIGH-DIMENSIONAL; IN-BUILDINGS; INDUSTRIAL CASE STUDY; INDUSTRIAL SCALE; INPUT VARIABLES; INPUT-OUTPUT DATA; LABORATORY SCALE; LEAST SQUARES; LOCAL MINIMUMS; MELT INDEX; NEUTRALISATION; NON-LINEAR MODEL; NONLINEAR KERNELS; NONLINEAR PROBLEMS; NONLINEAR PROCESS; OPTIMAL DELAY; OPTIMIZATION FORMULATIONS; OUTPUT VARIABLES; POLYMER EXTRUSION; PREDICTION ERRORS; RADIAL BASIS FUNCTIONS; SOFT SENSORS; SUPPORT VECTOR REGRESSION; SUPPORT VECTOR REGRESSIONS; SYSTEM IDENTIFICATIONS; TWIN SCREW;

EID: 79951983943     PISSN: 00084034     EISSN: 1939019X     Source Type: Journal    
DOI: 10.1002/cjce.20363     Document Type: Article
Times cited : (42)

References (42)
  • 2
    • 33750559803 scopus 로고    scopus 로고
    • A Fast Grid Search Method in Support Vector Regression Forecasting Time Series
    • E. Corchado, H. Yin, V. Botti and C. Fyfe, Eds., Springer, Springer-Verlag, Berlin
    • Bao, Y., and Z. Liu, "A Fast Grid Search Method in Support Vector Regression Forecasting Time Series," in "Intelligent Data Engineering and Automated Learning," E. Corchado, H. Yin, V. Botti and C. Fyfe, Eds., Springer, Springer-Verlag, Berlin (2006), pp. 504-511.
    • (2006) Intelligent Data Engineering and Automated Learning , pp. 504-511
    • Bao, Y.1    Liu, Z.2
  • 3
    • 85032750937 scopus 로고    scopus 로고
    • An Introduction to Compressive Sampling
    • Candes, E. J. and M. B. Wakin, "An Introduction to Compressive Sampling," IEEE Signal Process. Mag. 25(2), 21-30 (2008).
    • (2008) IEEE Signal Process. Mag. , vol.25 , Issue.2 , pp. 21-30
    • Candes, E.J.1    Wakin, M.B.2
  • 5
    • 0346250790 scopus 로고    scopus 로고
    • Practical Selection of SVM Parameters and Noise Estimation for SVM Regression
    • Cherkassky, V. and Y. Ma, "Practical Selection of SVM Parameters and Noise Estimation for SVM Regression," Neural Netw. 17(1), 113-126 (2004).
    • (2004) Neural Netw , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 6
    • 0038927293 scopus 로고    scopus 로고
    • DaISy: Database for the Identification of Systems
    • ESAT/SISTA, K.U. Leuven, Belgium. [used data set: pH Data, Section: Process Industry Systems, code number: 96-014]
    • De Moor, B. L. R., "DaISy: Database for the Identification of Systems," Department of Electrical Engineering, ESAT/SISTA, K.U. Leuven, Belgium. homes.esat.kuleuven.be/~smc/daisy [used data set: pH Data, Section: Process Industry Systems, code number: 96-014] (2010).
    • (2010) Department of Electrical Engineering
    • De Moor, B.L.R.1
  • 8
    • 0036160859 scopus 로고    scopus 로고
    • Efficient SVM Regression Training With SMO
    • Flake, G. W. and S. Lawrence, "Efficient SVM Regression Training With SMO," Machine Learn. 46(1-3), 271-290 (2002).
    • (2002) Machine Learn , vol.46 , Issue.1-3 , pp. 271-290
    • Flake, G.W.1    Lawrence, S.2
  • 9
    • 12344280395 scopus 로고    scopus 로고
    • Melt Index Modeling With Support Vector Machines, Partial Least Squares, and Artificial Neural Networks
    • Han, I.-S., C. Han and C.-B. Chung, "Melt Index Modeling With Support Vector Machines, Partial Least Squares, and Artificial Neural Networks," J. Appl. Polym. Sci. 95, 967-974 (2005).
    • (2005) J. Appl. Polym. Sci. , vol.95 , pp. 967-974
    • Han, I.-S.1    Han, C.2    Chung, C.-B.3
  • 11
    • 0003157339 scopus 로고
    • Robust Estimation of a Location Parameter
    • Huber, P. J., "Robust Estimation of a Location Parameter," Ann. Math. Stat. 35(1), 73-101 (1964).
    • (1964) Ann. Math. Stat. , vol.35 , Issue.1 , pp. 73-101
    • Huber, P.J.1
  • 12
    • 75349100404 scopus 로고    scopus 로고
    • A New Approach to Develop Dynamic Grey Box Model for a Plasticating Twin Screw Extruder
    • Iqbal, M. H., U. Sundararaj and S. L. Shah, "A New Approach to Develop Dynamic Grey Box Model for a Plasticating Twin Screw Extruder," Ind. Eng. Chem. Res. 49(2), 648-657 (2010).
    • (2010) Ind. Eng. Chem. Res. , vol.49 , Issue.2 , pp. 648-657
    • Iqbal, M.H.1    Sundararaj, U.2    Shah, S.L.3
  • 13
    • 0003620102 scopus 로고
    • Elseviers Scientific Publishing Company, New York
    • Janssen, L. P. B. M., "Twin Screw Extrusion," Elseviers Scientific Publishing Company, New York (1977).
    • (1977) Twin Screw Extrusion
    • Janssen, L.P.B.M.1
  • 14
    • 0017972806 scopus 로고
    • Inferential Control of Processes: Part I. Steady State Analysis and Design
    • Joseph, B. and C. B. Brosilow, "Inferential Control of Processes: Part I. Steady State Analysis and Design," AIChE J. 24(3), 485-492 (1978).
    • (1978) AIChE J , vol.24 , Issue.3 , pp. 485-492
    • Joseph, B.1    Brosilow, C.B.2
  • 15
    • 21244478685 scopus 로고    scopus 로고
    • Nonlinear Identification Based on Least Squares Support Vector Machine
    • ICARCV 2004 8th
    • Li, H., X. Zhu and B. Shi, "Nonlinear Identification Based on Least Squares Support Vector Machine," Control, Automation, Robotics and Vision Conference, 2004, ICARCV 2004 8th, Vol. 3, 2331-2335 (2004).
    • (2004) Control, Automation, Robotics and Vision Conference, 2004 , vol.3 , pp. 2331-2335
    • Li, H.1    Zhu, X.2    Shi, B.3
  • 17
    • 79951973420 scopus 로고    scopus 로고
    • 9th International Conference of IEEE on Control, Automation, Robotics and Vision (ICARCV 2006)
    • Ljung, L., "Identification of Nonlinear Systems," 9th International Conference of IEEE on Control, Automation, Robotics and Vision (ICARCV 2006) (2006).
    • (2006) Identification of Nonlinear Systems
    • Ljung, L.1
  • 20
    • 0001500115 scopus 로고
    • Functions of Positive and Negative Type, and Their Connection With the Theory of Integral Equations
    • Mercer, J., "Functions of Positive and Negative Type, and Their Connection With the Theory of Integral Equations," Phil. Trans. R. Soc. Lond. Ser. A 209, 415-446 (1909).
    • (1909) Phil. Trans. R. Soc. Lond. Ser. A , vol.209 , pp. 415-446
    • Mercer, J.1
  • 21
    • 0442312364 scopus 로고    scopus 로고
    • Hybrid Process Modeling and Optimization Strategies Integrating Neural Networks/Support Vector Regression and Genetic Algorithms: Study of Benzene Isopropylation on hbeta Catalyst
    • Nandi, S., Y. Badhe, J. Lonari, U. Sridevi, B. Rao, S. S. Tambe and B. D. Kulkarni, "Hybrid Process Modeling and Optimization Strategies Integrating Neural Networks/Support Vector Regression and Genetic Algorithms: Study of Benzene Isopropylation on hbeta Catalyst," Chem. Eng. J. 97(2-3), 115-129 (2004).
    • (2004) Chem. Eng. J. , vol.97 , Issue.2-3 , pp. 115-129
    • Nandi, S.1    Badhe, Y.2    Lonari, J.3    Sridevi, U.4    Rao, B.5    Tambe, S.S.6    Kulkarni, B.D.7
  • 22
    • 0033874542 scopus 로고    scopus 로고
    • Quality Control of Polymer Production Processes
    • Ohshima, M. and M. Tanigaki, "Quality Control of Polymer Production Processes," J. Process Control 10(2-3), 135-148 (2000).
    • (2000) J. Process Control , vol.10 , Issue.2-3 , pp. 135-148
    • Ohshima, M.1    Tanigaki, M.2
  • 23
    • 0000106040 scopus 로고
    • Universal Approximation Using Radial-Basis-Function Networks
    • Park, J. and I. W. Sandberg, "Universal Approximation Using Radial-Basis-Function Networks," Neural Comput. 3(2), 246-257 (1991).
    • (1991) Neural Comput , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 24
    • 33747876682 scopus 로고    scopus 로고
    • Nonlinear Empirical Modeling Techniques
    • Pearson, R. K., "Nonlinear Empirical Modeling Techniques," Comput. Chem. Eng. 30, 1514-1528 (2006).
    • (2006) Comput. Chem. Eng. , vol.30 , pp. 1514-1528
    • Pearson, R.K.1
  • 25
    • 0003120218 scopus 로고    scopus 로고
    • Fast Training of Support Vector Machines Using Sequential Minimal Optimization
    • B. Schölkopf, C. J. Burges and A. J. Smola, Eds., MIT Press, Cambridge, MA
    • Platt, J. C., "Fast Training of Support Vector Machines Using Sequential Minimal Optimization," in "Advances in Kernel Methods: Support Vector Learning," B. Schölkopf, C. J. Burges and A. J. Smola, Eds., MIT Press, Cambridge, MA, pp. 185-208 (1999).
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 26
    • 79952370569 scopus 로고    scopus 로고
    • On the Noise Model of Support Vector Machines Regression
    • Sydney, Australia, December 2000, Proceedings, Springer, Springer-Verlag, Berlin
    • Pontil, M., S. Mukherjee and F. Girosi, "On the Noise Model of Support Vector Machines Regression," Algorithmic Learning Theory, 11th International Conference, ALT 2000, Sydney, Australia, December 2000, Proceedings, Vol. 1968, pp. 316-324, Springer, Springer-Verlag, Berlin (2000).
    • (2000) Algorithmic Learning Theory, 11th International Conference, ALT 2000 , vol.1968 , pp. 316-324
    • Pontil, M.1    Mukherjee, S.2    Girosi, F.3
  • 27
    • 0031648483 scopus 로고    scopus 로고
    • Determining the Model Order of Nonlinear Input/Output Systems
    • Rhodes, C. and M. Morari, "Determining the Model Order of Nonlinear Input/Output Systems," AIChE J. 44(1), 151-163 (1998).
    • (1998) AIChE J , vol.44 , Issue.1 , pp. 151-163
    • Rhodes, C.1    Morari, M.2
  • 32
    • 33745166286 scopus 로고    scopus 로고
    • Melt Index Prediction by Weighted Least Squares Support Vector Machines
    • Shi, J. and X. Liu, "Melt Index Prediction by Weighted Least Squares Support Vector Machines," J. Appl. Polym. Sci. 101(1), 285-289 (2006).
    • (2006) J. Appl. Polym. Sci. , vol.101 , Issue.1 , pp. 285-289
    • Shi, J.1    Liu, X.2
  • 33
    • 0003401675 scopus 로고    scopus 로고
    • Technical Report NC2-TR-1998-030, NeuroCOLT2, ESPRIT Working Group on Neural and Computational Learning Theory, Royal Holloway College, University of London
    • Smola, A. J. and B. Scholkopf, "A Tutorial on Support Vector Regression," Technical Report NC2-TR-1998-030, NeuroCOLT2, ESPRIT Working Group on Neural and Computational Learning Theory, Royal Holloway College, University of London (2003).
    • (2003) A Tutorial on Support Vector Regression
    • Smola, A.J.1    Scholkopf, B.2
  • 34
    • 77957003288 scopus 로고    scopus 로고
    • Support Vector Machines and Kernel-Based Learning for Dynamical Systems Modelling
    • Saint-Malo, France
    • Suykens, J. A. K., "Support Vector Machines and Kernel-Based Learning for Dynamical Systems Modelling," Proceedings of the 15th IFAC Symposium on System Identification, Saint-Malo, France, pp. 1029-1037 (2009).
    • (2009) Proceedings of the 15th IFAC Symposium on System Identification , pp. 1029-1037
    • Suykens, J.A.K.1
  • 35
    • 0032638628 scopus 로고    scopus 로고
    • Least Squares Support Vector Machine Classifiers
    • Suykens, J. A. K. and J. Vandewalle, "Least Squares Support Vector Machine Classifiers," Neural Process. Lett. 9(3), 293-300 (1999).
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 39
    • 35048829777 scopus 로고    scopus 로고
    • Rbf Kernel Based Support Vector Machine With Universal Approximation and Its Application
    • F. Yin, J. Wang and C. Guo, Eds., Springer, Springer-Verlag, Berlin
    • Wang, J., Q. Chen, and Y. Chen, "Rbf Kernel Based Support Vector Machine With Universal Approximation and Its Application," in "Advances in Neural Networks-ISNN 2004, Part I," F. Yin, J. Wang and C. Guo, Eds., Springer, Springer-Verlag, Berlin pp. 512-517 (2004).
    • (2004) Advances in Neural Networks-ISNN 2004 , pp. 512-517
    • Wang, J.1    Chen, Q.2    Chen, Y.3
  • 41
    • 34247580190 scopus 로고    scopus 로고
    • Support Vector Regression Model Predictive Control on a HVAC Plant
    • Xi, X.-C., A.-N. Poo and S.-K. Chou, "Support Vector Regression Model Predictive Control on a HVAC Plant," Control Eng. Pract. 15(8), 897-908 (2007).
    • (2007) Control Eng. Pract. , vol.15 , Issue.8 , pp. 897-908
    • Xi, X.-C.1    Poo, A.-N.2    Chou, S.-K.3
  • 42
    • 2342567014 scopus 로고    scopus 로고
    • Soft Sensing Modeling Based on Support Vector Machine and Bayesian Model Selection
    • Yan, W., H. Shao and X. Wang, "Soft Sensing Modeling Based on Support Vector Machine and Bayesian Model Selection," Comput. Chem. Eng. 28(8), 1489-1498 (2004).
    • (2004) Comput. Chem. Eng. , vol.28 , Issue.8 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.