-
2
-
-
33750559803
-
A Fast Grid Search Method in Support Vector Regression Forecasting Time Series
-
E. Corchado, H. Yin, V. Botti and C. Fyfe, Eds., Springer, Springer-Verlag, Berlin
-
Bao, Y., and Z. Liu, "A Fast Grid Search Method in Support Vector Regression Forecasting Time Series," in "Intelligent Data Engineering and Automated Learning," E. Corchado, H. Yin, V. Botti and C. Fyfe, Eds., Springer, Springer-Verlag, Berlin (2006), pp. 504-511.
-
(2006)
Intelligent Data Engineering and Automated Learning
, pp. 504-511
-
-
Bao, Y.1
Liu, Z.2
-
3
-
-
85032750937
-
An Introduction to Compressive Sampling
-
Candes, E. J. and M. B. Wakin, "An Introduction to Compressive Sampling," IEEE Signal Process. Mag. 25(2), 21-30 (2008).
-
(2008)
IEEE Signal Process. Mag.
, vol.25
, Issue.2
, pp. 21-30
-
-
Candes, E.J.1
Wakin, M.B.2
-
5
-
-
0346250790
-
Practical Selection of SVM Parameters and Noise Estimation for SVM Regression
-
Cherkassky, V. and Y. Ma, "Practical Selection of SVM Parameters and Noise Estimation for SVM Regression," Neural Netw. 17(1), 113-126 (2004).
-
(2004)
Neural Netw
, vol.17
, Issue.1
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
-
6
-
-
0038927293
-
DaISy: Database for the Identification of Systems
-
ESAT/SISTA, K.U. Leuven, Belgium. [used data set: pH Data, Section: Process Industry Systems, code number: 96-014]
-
De Moor, B. L. R., "DaISy: Database for the Identification of Systems," Department of Electrical Engineering, ESAT/SISTA, K.U. Leuven, Belgium. homes.esat.kuleuven.be/~smc/daisy [used data set: pH Data, Section: Process Industry Systems, code number: 96-014] (2010).
-
(2010)
Department of Electrical Engineering
-
-
De Moor, B.L.R.1
-
7
-
-
84899013173
-
Support Vector Regression Machines
-
MIT Press, Cambridge, MA
-
Drucker, H., C. Burges, L. Kaufman, A. Smola and V. Vapnik, "Support Vector Regression Machines," Proceedings of the 1996 Conference on Advances in Neural Information Processing Systems, 9, 155-161, MIT Press, Cambridge, MA (1997).
-
(1997)
Proceedings of the 1996 Conference on Advances in Neural Information Processing Systems
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges, C.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
8
-
-
0036160859
-
Efficient SVM Regression Training With SMO
-
Flake, G. W. and S. Lawrence, "Efficient SVM Regression Training With SMO," Machine Learn. 46(1-3), 271-290 (2002).
-
(2002)
Machine Learn
, vol.46
, Issue.1-3
, pp. 271-290
-
-
Flake, G.W.1
Lawrence, S.2
-
9
-
-
12344280395
-
Melt Index Modeling With Support Vector Machines, Partial Least Squares, and Artificial Neural Networks
-
Han, I.-S., C. Han and C.-B. Chung, "Melt Index Modeling With Support Vector Machines, Partial Least Squares, and Artificial Neural Networks," J. Appl. Polym. Sci. 95, 967-974 (2005).
-
(2005)
J. Appl. Polym. Sci.
, vol.95
, pp. 967-974
-
-
Han, I.-S.1
Han, C.2
Chung, C.-B.3
-
10
-
-
4944228528
-
A Practical Guide to Support Vector Classification
-
National Taiwan University. Available at
-
Hsu, C.-W., C.-C. Chang and C.-J. Lin, "A Practical Guide to Support Vector Classification," Technical Report, Department of Computer Science and Information Engineering, National Taiwan University. Available at www.csie.ntu.edu.tw/~cjlin/ papers/guide/guide.pdf (2004).
-
(2004)
Technical Report, Department of Computer Science and Information Engineering
-
-
Hsu, C.-W.1
Chang, C.-C.2
Lin, C.-J.3
-
11
-
-
0003157339
-
Robust Estimation of a Location Parameter
-
Huber, P. J., "Robust Estimation of a Location Parameter," Ann. Math. Stat. 35(1), 73-101 (1964).
-
(1964)
Ann. Math. Stat.
, vol.35
, Issue.1
, pp. 73-101
-
-
Huber, P.J.1
-
12
-
-
75349100404
-
A New Approach to Develop Dynamic Grey Box Model for a Plasticating Twin Screw Extruder
-
Iqbal, M. H., U. Sundararaj and S. L. Shah, "A New Approach to Develop Dynamic Grey Box Model for a Plasticating Twin Screw Extruder," Ind. Eng. Chem. Res. 49(2), 648-657 (2010).
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, Issue.2
, pp. 648-657
-
-
Iqbal, M.H.1
Sundararaj, U.2
Shah, S.L.3
-
13
-
-
0003620102
-
-
Elseviers Scientific Publishing Company, New York
-
Janssen, L. P. B. M., "Twin Screw Extrusion," Elseviers Scientific Publishing Company, New York (1977).
-
(1977)
Twin Screw Extrusion
-
-
Janssen, L.P.B.M.1
-
14
-
-
0017972806
-
Inferential Control of Processes: Part I. Steady State Analysis and Design
-
Joseph, B. and C. B. Brosilow, "Inferential Control of Processes: Part I. Steady State Analysis and Design," AIChE J. 24(3), 485-492 (1978).
-
(1978)
AIChE J
, vol.24
, Issue.3
, pp. 485-492
-
-
Joseph, B.1
Brosilow, C.B.2
-
15
-
-
21244478685
-
Nonlinear Identification Based on Least Squares Support Vector Machine
-
ICARCV 2004 8th
-
Li, H., X. Zhu and B. Shi, "Nonlinear Identification Based on Least Squares Support Vector Machine," Control, Automation, Robotics and Vision Conference, 2004, ICARCV 2004 8th, Vol. 3, 2331-2335 (2004).
-
(2004)
Control, Automation, Robotics and Vision Conference, 2004
, vol.3
, pp. 2331-2335
-
-
Li, H.1
Zhu, X.2
Shi, B.3
-
17
-
-
79951973420
-
-
9th International Conference of IEEE on Control, Automation, Robotics and Vision (ICARCV 2006)
-
Ljung, L., "Identification of Nonlinear Systems," 9th International Conference of IEEE on Control, Automation, Robotics and Vision (ICARCV 2006) (2006).
-
(2006)
Identification of Nonlinear Systems
-
-
Ljung, L.1
-
18
-
-
79951983857
-
An Integrated System Identification Toolbox for Linear and Non-Linear Models
-
Newcastle, Australia
-
Ljung, L., Q. Zhang, P. Lindskog, A. Juditsky and R. Singh, "An Integrated System Identification Toolbox for Linear and Non-Linear Models," Proc. 14th IFAC Symposium on System Identification, Newcastle, Australia (2006).
-
(2006)
Proc. 14th IFAC Symposium on System Identification
-
-
Ljung, L.1
Zhang, Q.2
Lindskog, P.3
Juditsky, A.4
Singh, R.5
-
19
-
-
0015280796
-
Dynamics of pH in Controlled Stirred Tank Reactor
-
McAvoy, T. J., E. Hsu and S. Lowenthal, "Dynamics of pH in Controlled Stirred Tank Reactor," Ind. Eng. Chem. Process Des. Dev. 11(1), 68-70 (1972).
-
(1972)
Ind. Eng. Chem. Process Des. Dev.
, vol.11
, Issue.1
, pp. 68-70
-
-
McAvoy, T.J.1
Hsu, E.2
Lowenthal, S.3
-
20
-
-
0001500115
-
Functions of Positive and Negative Type, and Their Connection With the Theory of Integral Equations
-
Mercer, J., "Functions of Positive and Negative Type, and Their Connection With the Theory of Integral Equations," Phil. Trans. R. Soc. Lond. Ser. A 209, 415-446 (1909).
-
(1909)
Phil. Trans. R. Soc. Lond. Ser. A
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
21
-
-
0442312364
-
Hybrid Process Modeling and Optimization Strategies Integrating Neural Networks/Support Vector Regression and Genetic Algorithms: Study of Benzene Isopropylation on hbeta Catalyst
-
Nandi, S., Y. Badhe, J. Lonari, U. Sridevi, B. Rao, S. S. Tambe and B. D. Kulkarni, "Hybrid Process Modeling and Optimization Strategies Integrating Neural Networks/Support Vector Regression and Genetic Algorithms: Study of Benzene Isopropylation on hbeta Catalyst," Chem. Eng. J. 97(2-3), 115-129 (2004).
-
(2004)
Chem. Eng. J.
, vol.97
, Issue.2-3
, pp. 115-129
-
-
Nandi, S.1
Badhe, Y.2
Lonari, J.3
Sridevi, U.4
Rao, B.5
Tambe, S.S.6
Kulkarni, B.D.7
-
22
-
-
0033874542
-
Quality Control of Polymer Production Processes
-
Ohshima, M. and M. Tanigaki, "Quality Control of Polymer Production Processes," J. Process Control 10(2-3), 135-148 (2000).
-
(2000)
J. Process Control
, vol.10
, Issue.2-3
, pp. 135-148
-
-
Ohshima, M.1
Tanigaki, M.2
-
23
-
-
0000106040
-
Universal Approximation Using Radial-Basis-Function Networks
-
Park, J. and I. W. Sandberg, "Universal Approximation Using Radial-Basis-Function Networks," Neural Comput. 3(2), 246-257 (1991).
-
(1991)
Neural Comput
, vol.3
, Issue.2
, pp. 246-257
-
-
Park, J.1
Sandberg, I.W.2
-
24
-
-
33747876682
-
Nonlinear Empirical Modeling Techniques
-
Pearson, R. K., "Nonlinear Empirical Modeling Techniques," Comput. Chem. Eng. 30, 1514-1528 (2006).
-
(2006)
Comput. Chem. Eng.
, vol.30
, pp. 1514-1528
-
-
Pearson, R.K.1
-
25
-
-
0003120218
-
Fast Training of Support Vector Machines Using Sequential Minimal Optimization
-
B. Schölkopf, C. J. Burges and A. J. Smola, Eds., MIT Press, Cambridge, MA
-
Platt, J. C., "Fast Training of Support Vector Machines Using Sequential Minimal Optimization," in "Advances in Kernel Methods: Support Vector Learning," B. Schölkopf, C. J. Burges and A. J. Smola, Eds., MIT Press, Cambridge, MA, pp. 185-208 (1999).
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
26
-
-
79952370569
-
On the Noise Model of Support Vector Machines Regression
-
Sydney, Australia, December 2000, Proceedings, Springer, Springer-Verlag, Berlin
-
Pontil, M., S. Mukherjee and F. Girosi, "On the Noise Model of Support Vector Machines Regression," Algorithmic Learning Theory, 11th International Conference, ALT 2000, Sydney, Australia, December 2000, Proceedings, Vol. 1968, pp. 316-324, Springer, Springer-Verlag, Berlin (2000).
-
(2000)
Algorithmic Learning Theory, 11th International Conference, ALT 2000
, vol.1968
, pp. 316-324
-
-
Pontil, M.1
Mukherjee, S.2
Girosi, F.3
-
27
-
-
0031648483
-
Determining the Model Order of Nonlinear Input/Output Systems
-
Rhodes, C. and M. Morari, "Determining the Model Order of Nonlinear Input/Output Systems," AIChE J. 44(1), 151-163 (1998).
-
(1998)
AIChE J
, vol.44
, Issue.1
, pp. 151-163
-
-
Rhodes, C.1
Morari, M.2
-
28
-
-
9144233003
-
Support Vector Method for Robust ARMA System Identification
-
Rojo-Álvarez, J. L., M. Martínez-Ramón, M. de Prado-Cumplido, A. Artés-Rodríguez and A. R. Figueiras-Vidal, "Support Vector Method for Robust ARMA System Identification," IEEE Trans. 52(1), 155-164 (2004).
-
(2004)
IEEE Trans
, vol.52
, Issue.1
, pp. 155-164
-
-
Rojo-Álvarez, J.L.1
Martínez-Ramón, M.2
de Prado-Cumplido, M.3
Artés-Rodríguez, A.4
Figueiras-Vidal, A.R.5
-
29
-
-
0002619965
-
Ridge Regression Learning Algorithm in Dual Variables
-
Morgan Kaufmann, San Francisco, CA
-
Saunders, G., A. Gammerman and V. Vovk, "Ridge Regression Learning Algorithm in Dual Variables," Proc. 15th International Conf. on Machine Learning, Morgan Kaufmann, San Francisco, CA, pp. 515-521 (1998).
-
(1998)
Proc. 15th International Conf. on Machine Learning
, pp. 515-521
-
-
Saunders, G.1
Gammerman, A.2
Vovk, V.3
-
30
-
-
0031272926
-
Comparing Support Vector Machines With Gaussian Kernels to Radial Basis Function Classifiers
-
Scholkopf, B., K.-K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio and V. Vapnik, "Comparing Support Vector Machines With Gaussian Kernels to Radial Basis Function Classifiers," IEEE Trans. Signal Process. 45(11), 2758-2765 (1997).
-
(1997)
IEEE Trans. Signal Process.
, vol.45
, Issue.11
, pp. 2758-2765
-
-
Scholkopf, B.1
Sung, K.-K.2
Burges, C.3
Girosi, F.4
Niyogi, P.5
Poggio, T.6
Vapnik, V.7
-
31
-
-
0001149082
-
Support Vector Regression With Automatic Accuracy Control
-
L. Niklasson, M. Boden and T. Ziemke, Eds., Prentice Hall PTR, Springer-Verlag, Berlin
-
Scholkopf, B., P. Bartlett, A. Smola and R. Williamson, "Support Vector Regression With Automatic Accuracy Control," in "Proceedings of Eighth International Conference on Artificial Neural Networks," L. Niklasson, M. Boden and T. Ziemke, Eds., Prentice Hall PTR, Springer-Verlag, Berlin pp. 111-116 (1998).
-
(1998)
Proceedings of Eighth International Conference on Artificial Neural Networks
, pp. 111-116
-
-
Scholkopf, B.1
Bartlett, P.2
Smola, A.3
Williamson, R.4
-
32
-
-
33745166286
-
Melt Index Prediction by Weighted Least Squares Support Vector Machines
-
Shi, J. and X. Liu, "Melt Index Prediction by Weighted Least Squares Support Vector Machines," J. Appl. Polym. Sci. 101(1), 285-289 (2006).
-
(2006)
J. Appl. Polym. Sci.
, vol.101
, Issue.1
, pp. 285-289
-
-
Shi, J.1
Liu, X.2
-
33
-
-
0003401675
-
-
Technical Report NC2-TR-1998-030, NeuroCOLT2, ESPRIT Working Group on Neural and Computational Learning Theory, Royal Holloway College, University of London
-
Smola, A. J. and B. Scholkopf, "A Tutorial on Support Vector Regression," Technical Report NC2-TR-1998-030, NeuroCOLT2, ESPRIT Working Group on Neural and Computational Learning Theory, Royal Holloway College, University of London (2003).
-
(2003)
A Tutorial on Support Vector Regression
-
-
Smola, A.J.1
Scholkopf, B.2
-
34
-
-
77957003288
-
Support Vector Machines and Kernel-Based Learning for Dynamical Systems Modelling
-
Saint-Malo, France
-
Suykens, J. A. K., "Support Vector Machines and Kernel-Based Learning for Dynamical Systems Modelling," Proceedings of the 15th IFAC Symposium on System Identification, Saint-Malo, France, pp. 1029-1037 (2009).
-
(2009)
Proceedings of the 15th IFAC Symposium on System Identification
, pp. 1029-1037
-
-
Suykens, J.A.K.1
-
35
-
-
0032638628
-
Least Squares Support Vector Machine Classifiers
-
Suykens, J. A. K. and J. Vandewalle, "Least Squares Support Vector Machine Classifiers," Neural Process. Lett. 9(3), 293-300 (1999).
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
38
-
-
85064478897
-
Identification of a High Efficiency Boiler by Support Vector Machines Without Bias Term
-
Rotterdam, The Netherlands, August 27-29, 2003
-
Vogt, M., K. Spreitzer and V. Kecman, "Identification of a High Efficiency Boiler by Support Vector Machines Without Bias Term," System Identification 2003: A Proceedings Volume from the 13th IFAC Symposium on System Identification, Rotterdam, The Netherlands, August 27-29, 2003, 1, 465-471 (2004).
-
(2004)
System Identification 2003: A Proceedings Volume from the 13th IFAC Symposium on System Identification
, vol.1
, pp. 465-471
-
-
Vogt, M.1
Spreitzer, K.2
Kecman, V.3
-
39
-
-
35048829777
-
Rbf Kernel Based Support Vector Machine With Universal Approximation and Its Application
-
F. Yin, J. Wang and C. Guo, Eds., Springer, Springer-Verlag, Berlin
-
Wang, J., Q. Chen, and Y. Chen, "Rbf Kernel Based Support Vector Machine With Universal Approximation and Its Application," in "Advances in Neural Networks-ISNN 2004, Part I," F. Yin, J. Wang and C. Guo, Eds., Springer, Springer-Verlag, Berlin pp. 512-517 (2004).
-
(2004)
Advances in Neural Networks-ISNN 2004
, pp. 512-517
-
-
Wang, J.1
Chen, Q.2
Chen, Y.3
-
40
-
-
0001873884
-
Support Vector Density Estimation
-
B. Scholkopf, C. J. C. Burges and A. J. Smola, Eds., MIT Press, Cambridge, MA
-
Weston, J., A. Gammerman, M. O. Stitson, V. Vapnik, V. Vovk and C. Watkins, "Support Vector Density Estimation," in "Advances in Kernel Methods-Support Vector Learning," B. Scholkopf, C. J. C. Burges and A. J. Smola, Eds., MIT Press, Cambridge, MA pp. 293-305 (1999).
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 293-305
-
-
Weston, J.1
Gammerman, A.2
Stitson, M.O.3
Vapnik, V.4
Vovk, V.5
Watkins, C.6
-
41
-
-
34247580190
-
Support Vector Regression Model Predictive Control on a HVAC Plant
-
Xi, X.-C., A.-N. Poo and S.-K. Chou, "Support Vector Regression Model Predictive Control on a HVAC Plant," Control Eng. Pract. 15(8), 897-908 (2007).
-
(2007)
Control Eng. Pract.
, vol.15
, Issue.8
, pp. 897-908
-
-
Xi, X.-C.1
Poo, A.-N.2
Chou, S.-K.3
-
42
-
-
2342567014
-
Soft Sensing Modeling Based on Support Vector Machine and Bayesian Model Selection
-
Yan, W., H. Shao and X. Wang, "Soft Sensing Modeling Based on Support Vector Machine and Bayesian Model Selection," Comput. Chem. Eng. 28(8), 1489-1498 (2004).
-
(2004)
Comput. Chem. Eng.
, vol.28
, Issue.8
, pp. 1489-1498
-
-
Yan, W.1
Shao, H.2
Wang, X.3
|