메뉴 건너뛰기




Volumn 14, Issue , 2013, Pages 1947-1988

Alleviating Naive Bayes attribute independence assumption by attribute weighting

Author keywords

Attribute independence assumption; Classification; Naive Bayes; Weighted naive Bayes classification

Indexed keywords

ATTRIBUTE INDEPENDENCE ASSUMPTION; ATTRIBUTE WEIGHTING; CONDITIONAL INDEPENDENCE ASSUMPTION; LOGISTIC REGRESSIONS; MACHINE LEARNING COMMUNITIES; NAIVE BAYES; NAIVE BAYES CLASSIFIERS; WEIGHTED NAIVE BAYES;

EID: 84884223082     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (172)

References (46)
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45:5-32, 2001.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 5
    • 21244433569 scopus 로고    scopus 로고
    • Tan classifiers based on decomposable distributions
    • J. Cerquides and R. L. De Mántaras. Tan classifiers based on decomposable distributions. Machine Learning, 59(3):323-354, 2005a.
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 323-354
    • Cerquides, J.1    De Mántaras, R.L.2
  • 9
    • 0002345034 scopus 로고
    • The comparison and evaluation of forecasters
    • M. H. DeGroot and S. E. Fienbert. The comparison and evaluation of forecasters. Statistician, 32(1):12-22, 1982.
    • (1982) Statistician , vol.32 , Issue.1 , pp. 12-22
    • De Groot, M.H.1    Fienbert, S.E.2
  • 10
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 13
    • 0003024008 scopus 로고
    • On the handling of continuous-valued attributes in decision tree generation
    • U. M. Fayyad and B. I. Keki. On the handling of continuous-valued attributes in decision tree generation. Machine Learning, 8(1):87-102, 1992.
    • (1992) Machine Learning , vol.8 , Issue.1 , pp. 87-102
    • Fayyad, U.M.1    Keki, B.I.2
  • 17
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. The American Statistical Association, 32(200):675-701, 1937.
    • (1937) The American Statistical Association , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1
  • 18
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • M. Friedman. A comparison of alternative tests of significance for the problem of m rankings. The American Statistical Association, 11(1):86-92, 1940.
    • (1940) The American Statistical Association , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 19
    • 0030359493 scopus 로고    scopus 로고
    • Building classifiers using Bayesian networks
    • N. Friedman and M. Goldszmidt. Building classifiers using Bayesian networks. In AAAI-96, pages 1277-1284, 1996.
    • (1996) AAAI-96 , pp. 1277-1284
    • Friedman, N.1    Goldszmidt, M.2
  • 21
    • 84884246747 scopus 로고    scopus 로고
    • Structural extensions to logistic regression: Discriminative parameter learning of belief net classifiers
    • R. Greiner, W. Zhou, X. Su, and B. Shen. Structural extensions to logistic regression: Discriminative parameter learning of belief net classifiers. Journal of Machine Learning Research, 2004.
    • (2004) Journal of Machine Learning Research
    • Greiner, R.1    Zhou, W.2    Su, X.3    Shen, B.4
  • 24
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • Morgan Kaufmann
    • M. A. Hall. Correlation-based feature selection for discrete and numeric class machine learning. In Proceedings of the Seventeenth International Conference on Machine Learning, pages 359-366. Morgan Kaufmann, 2000.
    • (2000) Proceedings of the Seventeenth International Conference on Machine Learning , pp. 359-366
    • Hall, M.A.1
  • 25
    • 33847166276 scopus 로고    scopus 로고
    • A decision tree-based attribute weighting filter for naive Bayes
    • March
    • M. A. Hall. A decision tree-based attribute weighting filter for naive Bayes. Knowledge-Based Systems, 20:120-126, March 2007.
    • (2007) Knowledge-based Systems , vol.20 , pp. 120-126
    • Hall, M.A.1
  • 26
    • 0035528674 scopus 로고    scopus 로고
    • Idiot's Bayes - Not so stupid after all?
    • D. J. Hand and K. Yu. Idiot's Bayes - not so stupid after all? International Statistical Review, 69(3):385-398, 2001.
    • (2001) International Statistical Review , vol.69 , Issue.3 , pp. 385-398
    • Hand, D.J.1    Yu, K.2
  • 29
    • 0003112380 scopus 로고
    • Comparison of inductive and naive Bayesian learning approaches to automatic knowledge acquisition
    • I. Kononenko. Comparison of inductive and naive Bayesian learning approaches to automatic knowledge acquisition. Current Trends in Knowledge Acquisition, 1990.
    • (1990) Current Trends in Knowledge Acquisition
    • Kononenko, I.1
  • 32
  • 33
    • 0002566236 scopus 로고
    • Reliability of subjective probability forecasts of precipitation and temperature
    • A. Murphy and R. Winkler. Reliability of subjective probability forecasts of precipitation and temperature. Applied Statistics, 26(1):41-47, 1977.
    • (1977) Applied Statistics , vol.26 , Issue.1 , pp. 41-47
    • Murphy, A.1    Winkler, R.2
  • 34
    • 77956911311 scopus 로고    scopus 로고
    • Efficient heuristics for discriminative structure learning of Bayesian network classifiers
    • F. Pernkopf and J. A. Bilmes. Efficient heuristics for discriminative structure learning of Bayesian network classifiers. Journal of Machine Learning Research, 2010.
    • (2010) Journal of Machine Learning Research
    • Pernkopf, F.1    Bilmes, J.A.2
  • 35
    • 0242498509 scopus 로고    scopus 로고
    • Feature selection for the naive Bayesian classifier using decision trees
    • C. A. Ratanamahatana and D. Gunopulos. Feature selection for the naive Bayesian classifier using decision trees. Applied Artificial Intelligence, pages 475-487, 2003.
    • (2003) Applied Artificial Intelligence , pp. 475-487
    • Ratanamahatana, C.A.1    Gunopulos, D.2
  • 36
    • 21244467519 scopus 로고    scopus 로고
    • On discriminative Bayesian network classifiers and logistic regression
    • T. Roos, H. Wettig, P. Grünwald, P. Myllymäki, and H. Tirri. On discriminative Bayesian network classifiers and logistic regression. Machine Learning, 59(3):267-296, 2005.
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 267-296
    • Roos, T.1    Wettig, H.2    Grünwald, P.3    Myllymäki, P.4    Tirri, H.5
  • 37
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • G. I. Webb. Multiboosting: A technique for combining boosting and wagging. Machine Learning, 40(2):159-196, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 38
    • 14844351034 scopus 로고    scopus 로고
    • Not so naive Bayes: Averaged one-dependence estimators
    • G. I. Webb, J. Boughton, and Z. Wang. Not so naive Bayes: Averaged one-dependence estimators. Machine Learning, 58(1):5-24, 2005.
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 5-24
    • Webb, G.I.1    Boughton, J.2    Wang, Z.3
  • 39
    • 84884256715 scopus 로고    scopus 로고
    • Learning by extrapolation from marginal to full-multivariate probability distributions: Decreasingly naive Bayesian classification
    • G. I. Webb, J. Boughton, F. Zheng, K. M. Ting, and H. Salem. Learning by extrapolation from marginal to full-multivariate probability distributions: decreasingly naive Bayesian classification. Machine Learning, pages 1-40, 2011.
    • (2011) Machine Learning , pp. 1-40
    • Webb, G.I.1    Boughton, J.2    Zheng, F.3    Ting, K.M.4    Salem, H.5
  • 40
    • 79957639096 scopus 로고    scopus 로고
    • Attribute weighting via differential evolution algorithm for attribute weighted naive Bayes (wnb)
    • J. Wu and Z. Cai. Attribute weighting via differential evolution algorithm for attribute weighted naive Bayes (wnb). Journal of Computational Information Systems, 7(5):1672-1679, 2011.
    • (2011) Journal of Computational Information Systems , vol.7 , Issue.5 , pp. 1672-1679
    • Wu, J.1    Cai, Z.2
  • 43
    • 84858341634 scopus 로고    scopus 로고
    • Subsumption resolution: An efficient and effective technique for semi-naive Bayesian learning
    • F. Zheng, G. I. Webb, P. Suraweera, and L. Zhu. Subsumption resolution: An efficient and effective technique for semi-naive Bayesian learning. Machine Learning, 87(1):93-125, 2012.
    • (2012) Machine Learning , vol.87 , Issue.1 , pp. 93-125
    • Zheng, F.1    Webb, G.I.2    Suraweera, P.3    Zhu, L.4
  • 44
    • 0034301677 scopus 로고    scopus 로고
    • Lazy learning of Bayesian rules
    • Z. Zheng and G. I. Webb. Lazy learning of Bayesian rules. Machine Learning, 41(1):53-84, 2000.
    • (2000) Machine Learning , vol.41 , Issue.1 , pp. 53-84
    • Zheng, Z.1    Webb, G.I.2
  • 46
    • 0031345518 scopus 로고    scopus 로고
    • L-bfgs-b: Algorithm 778: L-bfgs-b, fortran routines for large scale bound constrained optimization
    • C. Zhu, R. H. Byrd, and J. Nocedal. L-bfgs-b: Algorithm 778: L-bfgs-b, fortran routines for large scale bound constrained optimization. ACM Transactions on Mathematical Software, 23(4):550-560, 1997.
    • (1997) ACM Transactions on Mathematical Software , vol.23 , Issue.4 , pp. 550-560
    • Zhu, C.1    Byrd, R.H.2    Nocedal, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.