-
1
-
-
0346936077
-
The co-information lattice
-
A. J. Bell. The co-information lattice. In Proc. ICA'03, pages 921-926, 2003.
-
(2003)
Proc. ICA'03
, pp. 921-926
-
-
Bell, A.J.1
-
2
-
-
0003225924
-
Dynamic Bayesian multinets
-
Morgan Kaufmann
-
J. Bilmes. Dynamic Bayesian multinets. In Proc. UAI'00, pages 38-45. Morgan Kaufmann, 2000.
-
(2000)
Proc. UAI'00
, pp. 38-45
-
-
Bilmes, J.1
-
3
-
-
84881263455
-
Scoring function for learning Bayesian networks. Technical report
-
A. M. Carvalho. Scoring function for learning Bayesian networks. Technical report, INESC-ID Tec. Rep. 54/2009, 2009.
-
(2009)
INESC-ID Tec. Rep.
, vol.54
, pp. 2009
-
-
Carvalho, A.M.1
-
4
-
-
38349068855
-
Efficient learning of Bayesian network classifiers: An extension to the TAN classifier
-
M. A. Orgun and J. Thornton, editors Springer
-
A. M. Carvalho, A. L. Oliveira, and M.-F. Sagot. Efficient learning of Bayesian network classifiers: An extension to the TAN classifier. In M. A. Orgun and J. Thornton, editors, Proc. IA'07, volume 4830 of LNCS, pages 16-25. Springer, 2007.
-
(2007)
Proc. IA'07 Volume 4830 of LNCS
, pp. 16-25
-
-
Carvalho, A.M.1
Oliveira, A.L.2
Sagot, M.-F.3
-
5
-
-
0002013121
-
A transformational characterization of equivalent Bayesian network structures
-
Morgan Kaufmann
-
D. M. Chickering. A transformational characterization of equivalent Bayesian network structures. In Proc. UAI'95, pages 87-98. Morgan Kaufmann, 1995.
-
(1995)
Proc. UAI'95
, pp. 87-98
-
-
Chickering, D.M.1
-
6
-
-
0001019707
-
Learning Bayesian networks is NP-complete
-
D. Fisher and H.-J. Lenz, editors Springer
-
D. M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and H.-J. Lenz, editors, Learning from Data: AI and Statistics V, pages 121-130. Springer, 1996.
-
(1996)
Learning from Data: AI and Statistics v
, pp. 121-130
-
-
Chickering, D.M.1
-
7
-
-
0042496103
-
Learning Equivalence Classes of Bayesian-Network Structures
-
DOI 10.1162/153244302760200696
-
D. M. Chickering. Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 2:445-498, 2002. (Pubitemid 135712569)
-
(2002)
Journal of Machine Learning Research
, vol.2
, Issue.3
, pp. 445-498
-
-
Chickering, D.M.1
-
9
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3):462-467, 1968.
-
(1968)
IEEE Transactions on Information Theory
, vol.14
, Issue.3
, pp. 462-467
-
-
Chow, C.K.1
Liu, C.N.2
-
11
-
-
0012135466
-
Learning polytrees
-
Morgan Kaufmann
-
S. Dasgupta. Learning polytrees. In Proc. UAI'99, pages 134-141. Morgan Kaufmann, 1999.
-
(1999)
Proc. UAI'99
, pp. 134-141
-
-
Dasgupta, S.1
-
12
-
-
33750071718
-
A scoring function for learning Bayesian networks based on mutual information and conditional independence tests
-
L. M. de Campos. A scoring function for learning Bayesian networks based on mutual information and conditional independence tests. Journal of Machine Learning Research, 7:2149-2187, 2006. (Pubitemid 44582045)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2149-2187
-
-
De Campos, L.M.1
-
13
-
-
0031269184
-
On the Optimality of the Simple Bayesian Classifier under Zero-One Loss
-
P. Domingos and M. J. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2-3):103-130, 1997. (Pubitemid 127510035)
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
15
-
-
0002593344
-
Multi-interval discretization of continuous-valued attributes for classification learning
-
Morgan Kaufmann
-
U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-valued attributes for classification learning. In Proc. IJCAI'93, pages 1022-1029. Morgan Kaufmann, 1993.
-
(1993)
Proc. IJCAI'93
, pp. 1022-1029
-
-
Fayyad, U.M.1
Irani, K.B.2
-
16
-
-
0031276011
-
Bayesian Network Classifiers
-
N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learning, 29 (2-3):131-163, 1997. (Pubitemid 127510036)
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
17
-
-
0036927090
-
Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
-
AAAI Press
-
R. Greiner and W. Zhou. Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. In Proc. AAAI/IAAI'02, pages 167-173. AAAI Press, 2002.
-
(2002)
Proc. AAAI/IAAI'02
, pp. 167-173
-
-
Greiner, R.1
Zhou, W.2
-
18
-
-
21244444642
-
Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
-
DOI 10.1007/s10994-005-0469-0
-
R. Greiner, X. Su, B. Shen, and W. Zhou. Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Machine Learning, 59(3):297-322, 2005. (Pubitemid 40890481)
-
(2005)
Machine Learning
, vol.59
, Issue.3
, pp. 297-322
-
-
Greinemr, R.1
Su, X.2
Shen, B.3
Zhou, W.4
-
19
-
-
31844441688
-
Learning Bayesian network classifiers by maximizing conditional likelihood
-
ACM Press
-
D. Grossman and P. Domingos. Learning Bayesian network classifiers by maximizing conditional likelihood. In Proc. ICML'04, pages 46-53. ACM Press, 2004.
-
(2004)
Proc. ICML'04
, pp. 46-53
-
-
Grossman, D.1
Domingos, P.2
-
20
-
-
76749092270
-
The WEKA data mining software: An update
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA data mining software: An update. SIGKDD Explorations, 11(1):10-18, 2009.
-
(2009)
SIGKDD Explorations
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
21
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20(3):197-243, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
22
-
-
4944228528
-
-
Technical report, Department of Computer Science, National Taiwan University
-
C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University, 2003.
-
(2003)
A Practical Guide to Support Vector Classification
-
-
Hsu, C.-W.1
Chang, C.-C.2
Lin, C.-J.3
-
24
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
Morgan Kaufmann
-
R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proc. IJCAI'95, pages 1137-1145. Morgan Kaufmann, 1995.
-
(1995)
Proc. IJCAI'95
, pp. 1137-1145
-
-
Kohavi, R.1
-
25
-
-
0031381525
-
Wrappers for feature subset selection
-
PII S000437029700043X
-
R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2): 273-324, 1997. (Pubitemid 127401107)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
26
-
-
85166290991
-
BAYDA: Software for Bayesian classification and feature selection
-
AAAI Press
-
P. Kontkanen, P. Myllymäki, T. Silander, and H. Tirri. BAYDA: Software for Bayesian classification and feature selection. In Proc. KDD'98, pages 254-258. AAAI Press, 1998
-
(1998)
Proc. KDD'98
, pp. 254-258
-
-
Kontkanen, P.1
Myllymäki, P.2
Silander, T.3
Tirri, H.4
-
28
-
-
0002801737
-
Multivariate information transmission
-
W. J. McGill. Multivariate information transmission. Psychometrika, 19:97-116, 1954.
-
(1954)
Psychometrika
, vol.19
, pp. 97-116
-
-
McGill, W.J.1
-
33
-
-
31844434495
-
Discriminative versus generative parameter and structure learning of bayesian network classifiers
-
DOI 10.1145/1102351.1102434, ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
-
F. Pernkopf and J. A. Bilmes. Discriminative versus generative parameter and structure learning of Bayesian network classifiers. In Proc. ICML'05, pages 657-664. ACM Press, 2005. (Pubitemid 43183390)
-
(2005)
ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
, pp. 657-664
-
-
Pernkopf, F.1
Bilmes, J.2
-
34
-
-
21244467519
-
On discriminative Bayesian network classifiers and logistic regression
-
T. Roos, H. Wettig, P. Grünwald, P. Myllymäki, and H. Tirri. On discriminative Bayesian network classifiers and logistic regression. Machine Learning, 59(3):267-296, 2005. (Pubitemid 40890480)
-
(2005)
Machine Learning
, vol.59
, Issue.3
, pp. 267-296
-
-
Roos, T.1
Wettig, H.2
Grunwald, P.3
Myllymaki, P.4
Tirri, H.5
-
35
-
-
77955230275
-
Learning locally minimax optimal Bayesian networks
-
T. Silander, T. Roos, and P. Myllymäki. Learning locally minimax optimal Bayesian networks. International Journal of Approximate Reasoning, 51(5):544-557, 2010.
-
(2010)
International Journal of Approximate Reasoning
, vol.51
, Issue.5
, pp. 544-557
-
-
Silander, T.1
Roos, T.2
Myllymäki, P.3
-
37
-
-
56449116627
-
Discriminative parameter learning for Bayesian networks
-
ACM Press
-
J. Su, H. Zhang, C. X. Ling, and S. Matwin. Discriminative parameter learning for Bayesian networks. In Proc ICML'08, pages 1016-1023. ACM Press, 2008.
-
(2008)
Proc ICML'08
, pp. 1016-1023
-
-
Su, J.1
Zhang, H.2
Ling, C.X.3
Matwin, S.4
-
38
-
-
0002095306
-
Equivalence and synthesis of causal models
-
Elsevier
-
T. Verma and J. Pearl. Equivalence and synthesis of causal models. In Proc. UAI'90, pages 255-270. Elsevier, 1990.
-
(1990)
Proc. UAI'90
, pp. 255-270
-
-
Verma, T.1
Pearl, J.2
-
39
-
-
0036589503
-
Comparison of score metrics for Bayesian network learning
-
S. Yang and K.-C. Chang. Comparison of score metrics for Bayesian network learning. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 32(3):419-428, 2002.
-
(2002)
IEEE Transactions on Systems, Man, and Cybernetics, Part A
, vol.32
, Issue.3
, pp. 419-428
-
-
Yang, S.1
Chang, K.-C.2
|