메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 2181-2210

Discriminative learning of bayesian networks via factorized conditional log-likelihood

Author keywords

Approximation; Bayesian networks; Classification; Conditional log likelihood; Discriminative learning; Scoring criterion

Indexed keywords

APPROXIMATION; BENCHMARK DATA; COMPUTATIONAL RESOURCES; DECOMPOSABILITY; DISCRIMINATIVE LEARNING; EFFICIENT ESTIMATION; EMPIRICAL COMPARISON; INTERACTION INFORMATION; LEARNING BAYESIAN NETWORKS; LOG LIKELIHOOD; NETWORK STRUCTURES; OPTIMAL PARAMETER; SCORING CRITERIA; SPACE COMPLEXITY; UCI REPOSITORY;

EID: 80052204958     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (44)

References (39)
  • 1
    • 0346936077 scopus 로고    scopus 로고
    • The co-information lattice
    • A. J. Bell. The co-information lattice. In Proc. ICA'03, pages 921-926, 2003.
    • (2003) Proc. ICA'03 , pp. 921-926
    • Bell, A.J.1
  • 2
    • 0003225924 scopus 로고    scopus 로고
    • Dynamic Bayesian multinets
    • Morgan Kaufmann
    • J. Bilmes. Dynamic Bayesian multinets. In Proc. UAI'00, pages 38-45. Morgan Kaufmann, 2000.
    • (2000) Proc. UAI'00 , pp. 38-45
    • Bilmes, J.1
  • 3
    • 84881263455 scopus 로고    scopus 로고
    • Scoring function for learning Bayesian networks. Technical report
    • A. M. Carvalho. Scoring function for learning Bayesian networks. Technical report, INESC-ID Tec. Rep. 54/2009, 2009.
    • (2009) INESC-ID Tec. Rep. , vol.54 , pp. 2009
    • Carvalho, A.M.1
  • 4
    • 38349068855 scopus 로고    scopus 로고
    • Efficient learning of Bayesian network classifiers: An extension to the TAN classifier
    • M. A. Orgun and J. Thornton, editors Springer
    • A. M. Carvalho, A. L. Oliveira, and M.-F. Sagot. Efficient learning of Bayesian network classifiers: An extension to the TAN classifier. In M. A. Orgun and J. Thornton, editors, Proc. IA'07, volume 4830 of LNCS, pages 16-25. Springer, 2007.
    • (2007) Proc. IA'07 Volume 4830 of LNCS , pp. 16-25
    • Carvalho, A.M.1    Oliveira, A.L.2    Sagot, M.-F.3
  • 5
    • 0002013121 scopus 로고
    • A transformational characterization of equivalent Bayesian network structures
    • Morgan Kaufmann
    • D. M. Chickering. A transformational characterization of equivalent Bayesian network structures. In Proc. UAI'95, pages 87-98. Morgan Kaufmann, 1995.
    • (1995) Proc. UAI'95 , pp. 87-98
    • Chickering, D.M.1
  • 6
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-complete
    • D. Fisher and H.-J. Lenz, editors Springer
    • D. M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and H.-J. Lenz, editors, Learning from Data: AI and Statistics V, pages 121-130. Springer, 1996.
    • (1996) Learning from Data: AI and Statistics v , pp. 121-130
    • Chickering, D.M.1
  • 7
    • 0042496103 scopus 로고    scopus 로고
    • Learning Equivalence Classes of Bayesian-Network Structures
    • DOI 10.1162/153244302760200696
    • D. M. Chickering. Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 2:445-498, 2002. (Pubitemid 135712569)
    • (2002) Journal of Machine Learning Research , vol.2 , Issue.3 , pp. 445-498
    • Chickering, D.M.1
  • 9
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3):462-467, 1968.
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.3 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 11
    • 0012135466 scopus 로고    scopus 로고
    • Learning polytrees
    • Morgan Kaufmann
    • S. Dasgupta. Learning polytrees. In Proc. UAI'99, pages 134-141. Morgan Kaufmann, 1999.
    • (1999) Proc. UAI'99 , pp. 134-141
    • Dasgupta, S.1
  • 12
    • 33750071718 scopus 로고    scopus 로고
    • A scoring function for learning Bayesian networks based on mutual information and conditional independence tests
    • L. M. de Campos. A scoring function for learning Bayesian networks based on mutual information and conditional independence tests. Journal of Machine Learning Research, 7:2149-2187, 2006. (Pubitemid 44582045)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2149-2187
    • De Campos, L.M.1
  • 13
    • 0031269184 scopus 로고    scopus 로고
    • On the Optimality of the Simple Bayesian Classifier under Zero-One Loss
    • P. Domingos and M. J. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2-3):103-130, 1997. (Pubitemid 127510035)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 15
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • Morgan Kaufmann
    • U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-valued attributes for classification learning. In Proc. IJCAI'93, pages 1022-1029. Morgan Kaufmann, 1993.
    • (1993) Proc. IJCAI'93 , pp. 1022-1029
    • Fayyad, U.M.1    Irani, K.B.2
  • 16
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian Network Classifiers
    • N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learning, 29 (2-3):131-163, 1997. (Pubitemid 127510036)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 17
    • 0036927090 scopus 로고    scopus 로고
    • Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
    • AAAI Press
    • R. Greiner and W. Zhou. Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. In Proc. AAAI/IAAI'02, pages 167-173. AAAI Press, 2002.
    • (2002) Proc. AAAI/IAAI'02 , pp. 167-173
    • Greiner, R.1    Zhou, W.2
  • 18
    • 21244444642 scopus 로고    scopus 로고
    • Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
    • DOI 10.1007/s10994-005-0469-0
    • R. Greiner, X. Su, B. Shen, and W. Zhou. Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Machine Learning, 59(3):297-322, 2005. (Pubitemid 40890481)
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 297-322
    • Greinemr, R.1    Su, X.2    Shen, B.3    Zhou, W.4
  • 19
    • 31844441688 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers by maximizing conditional likelihood
    • ACM Press
    • D. Grossman and P. Domingos. Learning Bayesian network classifiers by maximizing conditional likelihood. In Proc. ICML'04, pages 46-53. ACM Press, 2004.
    • (2004) Proc. ICML'04 , pp. 46-53
    • Grossman, D.1    Domingos, P.2
  • 21
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20(3):197-243, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 24
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Morgan Kaufmann
    • R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proc. IJCAI'95, pages 1137-1145. Morgan Kaufmann, 1995.
    • (1995) Proc. IJCAI'95 , pp. 1137-1145
    • Kohavi, R.1
  • 25
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2): 273-324, 1997. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 26
    • 85166290991 scopus 로고    scopus 로고
    • BAYDA: Software for Bayesian classification and feature selection
    • AAAI Press
    • P. Kontkanen, P. Myllymäki, T. Silander, and H. Tirri. BAYDA: Software for Bayesian classification and feature selection. In Proc. KDD'98, pages 254-258. AAAI Press, 1998
    • (1998) Proc. KDD'98 , pp. 254-258
    • Kontkanen, P.1    Myllymäki, P.2    Silander, T.3    Tirri, H.4
  • 28
    • 0002801737 scopus 로고
    • Multivariate information transmission
    • W. J. McGill. Multivariate information transmission. Psychometrika, 19:97-116, 1954.
    • (1954) Psychometrika , vol.19 , pp. 97-116
    • McGill, W.J.1
  • 33
    • 31844434495 scopus 로고    scopus 로고
    • Discriminative versus generative parameter and structure learning of bayesian network classifiers
    • DOI 10.1145/1102351.1102434, ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
    • F. Pernkopf and J. A. Bilmes. Discriminative versus generative parameter and structure learning of Bayesian network classifiers. In Proc. ICML'05, pages 657-664. ACM Press, 2005. (Pubitemid 43183390)
    • (2005) ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning , pp. 657-664
    • Pernkopf, F.1    Bilmes, J.2
  • 34
    • 21244467519 scopus 로고    scopus 로고
    • On discriminative Bayesian network classifiers and logistic regression
    • T. Roos, H. Wettig, P. Grünwald, P. Myllymäki, and H. Tirri. On discriminative Bayesian network classifiers and logistic regression. Machine Learning, 59(3):267-296, 2005. (Pubitemid 40890480)
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 267-296
    • Roos, T.1    Wettig, H.2    Grunwald, P.3    Myllymaki, P.4    Tirri, H.5
  • 37
    • 56449116627 scopus 로고    scopus 로고
    • Discriminative parameter learning for Bayesian networks
    • ACM Press
    • J. Su, H. Zhang, C. X. Ling, and S. Matwin. Discriminative parameter learning for Bayesian networks. In Proc ICML'08, pages 1016-1023. ACM Press, 2008.
    • (2008) Proc ICML'08 , pp. 1016-1023
    • Su, J.1    Zhang, H.2    Ling, C.X.3    Matwin, S.4
  • 38
    • 0002095306 scopus 로고
    • Equivalence and synthesis of causal models
    • Elsevier
    • T. Verma and J. Pearl. Equivalence and synthesis of causal models. In Proc. UAI'90, pages 255-270. Elsevier, 1990.
    • (1990) Proc. UAI'90 , pp. 255-270
    • Verma, T.1    Pearl, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.