메뉴 건너뛰기




Volumn 20, Issue 2, 2007, Pages 120-126

A decision tree-based attribute weighting filter for naive Bayes

Author keywords

Attribute weighting; Bayesian learning; Machine learning

Indexed keywords

COMPUTATIONAL COMPLEXITY; LEARNING ALGORITHMS; LINEAR SYSTEMS; MATHEMATICAL MODELS;

EID: 33847166276     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2006.11.008     Document Type: Article
Times cited : (154)

References (28)
  • 1
    • 0000217085 scopus 로고
    • Tolerating noisy, irrelevant, and novel attributes in instance-based learning algorithms
    • Aha D.W. Tolerating noisy, irrelevant, and novel attributes in instance-based learning algorithms. Int. J. Man Mach. Stud. 36 (1992) 267-287
    • (1992) Int. J. Man Mach. Stud. , vol.36 , pp. 267-287
    • Aha, D.W.1
  • 2
    • 33847128327 scopus 로고    scopus 로고
    • C.L. Blake, C.J. Merz, UCI repository of machine learning databases, University of California, Irvine, Department of Information and Computer Science, 1998. Available from: www.ics.uci.edu/∼mlearn/MLRepository.html.
  • 6
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P., and Pazzani M.J. On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 29 2-3 (1997) 103-130
    • (1997) Mach. Learn. , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.J.2
  • 7
    • 0031069985 scopus 로고    scopus 로고
    • Context-sensitive feature selection for lazy learners
    • Domingos P. Context-sensitive feature selection for lazy learners. Artif. Intell. Rev. 11 227-253 (1997)
    • (1997) Artif. Intell. Rev. , vol.11 , Issue.227-253
    • Domingos, P.1
  • 8
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • Morgan Kaufman
    • Fayyad U.M., and Irani K.B. Multi-interval discretization of continuous-valued attributes for classification learning. Proceedings of the 13th International Joint Conference on AI (1993), Morgan Kaufman 1022-1027
    • (1993) Proceedings of the 13th International Joint Conference on AI , pp. 1022-1027
    • Fayyad, U.M.1    Irani, K.B.2
  • 10
    • 33847129594 scopus 로고    scopus 로고
    • M. Hall, Correlation-based feature selection for discrete and numeric class machine learning, in: Proceedings of the 17th International Conference on Machine Learning, 2000, pp. 359-366.
  • 13
    • 33847100492 scopus 로고    scopus 로고
    • S. Kim, H. Seo, H. Rim, Poisson naive Bayes for text classification with feature weighting, in: Proceedings of the 6th International Workshop on Information Retrieval with Asian Languages, 2003, pp. 33-40.
  • 15
    • 33847118507 scopus 로고    scopus 로고
    • R. Kohavi, P. Langley, Y. Yun, The utility of feature weighting in nearest-neighbor algorithms. in: M. van Someren, G. Widmer (Eds.), Poster Papers: Ninth European Conference on Machine Learning, Prague, Czech Republic, 1997, Unpublished.
  • 16
    • 33847116565 scopus 로고    scopus 로고
    • R. Kohavi, Scaling up the accuracy of naive-Bayes classifiers: a decision tree hybrid, in: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, 1996, pp. 202-207.
  • 19
    • 33847166903 scopus 로고    scopus 로고
    • C. Nadeau, Y. Bengio. Inference for the generalization error. Advances in Neural Information Processing Systems, 12, MIT Press, 1999, pp. 307-313.
  • 21
    • 0242498509 scopus 로고    scopus 로고
    • Feature selection for the naive Bayesian classifier using decision trees
    • Ratanamahatana C.A., and Gunopulos D. Feature selection for the naive Bayesian classifier using decision trees. Appl. Artif. Intell. 17 5-6 (2003) 475-487
    • (2003) Appl. Artif. Intell. , vol.17 , Issue.5-6 , pp. 475-487
    • Ratanamahatana, C.A.1    Gunopulos, D.2
  • 22
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of Relieff and RRelieff
    • Robnik-Sikonja M., and Kononenko I. Theoretical and empirical analysis of Relieff and RRelieff. Mach. Learning 53 1-2 (2003) 23-69
    • (2003) Mach. Learning , vol.53 , Issue.1-2 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 23
    • 0026156490 scopus 로고
    • A nearest hyperrectangle learning method
    • Salzberg S.L. A nearest hyperrectangle learning method. Mach. Learning 6 (1991) 251-276
    • (1991) Mach. Learning , vol.6 , pp. 251-276
    • Salzberg, S.L.1
  • 25
    • 0031073477 scopus 로고    scopus 로고
    • A review and empirical comparison of feature weighting methods for a class of lazy learning algorithms
    • Wettschereck D., Aha D.W., and Mohri T. A review and empirical comparison of feature weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 11 (1997) 273-314
    • (1997) Artif. Intell. Rev. , vol.11 , pp. 273-314
    • Wettschereck, D.1    Aha, D.W.2    Mohri, T.3
  • 27
    • 19544366243 scopus 로고    scopus 로고
    • H. Zhang, S. Sheng, Learning weighted naive Bayes with accurate ranking, in: Proceedings of the 4th IEEE International Conference on Data Mining, 2004, pp. 567-570.
  • 28
    • 0034301677 scopus 로고    scopus 로고
    • Lazy learning of Bayesian rules
    • Zheng Z., and Webb G.I. Lazy learning of Bayesian rules. Mach. Learning 41 1 (2000) 53-84
    • (2000) Mach. Learning , vol.41 , Issue.1 , pp. 53-84
    • Zheng, Z.1    Webb, G.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.