메뉴 건너뛰기




Volumn 87, Issue 1, 2012, Pages 93-125

Subsumption resolution: An efficient and effective technique for semi-naive Bayesian learning

Author keywords

AODE; Classification; Feature selection; Naive Bayes; Semi naive Bayes

Indexed keywords

AODE; ATTRIBUTE INDEPENDENCE ASSUMPTION; BAYESIAN LEARNING; BAYESIAN TECHNIQUES; CATEGORICAL DATA; CLASSIFICATION TIME; DATA SETS; EXPERIMENTAL COMPARISON; FRIEDMAN TEST; LOGISTIC REGRESSIONS; NAIVE BAYES; SEMI-NAIVE BAYES; TEST TIME; TRAINING TIME; ZERO-ONE;

EID: 84858341634     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-011-5275-2     Document Type: Article
Times cited : (57)

References (48)
  • 4
    • 84858338898 scopus 로고    scopus 로고
    • Logic of generality
    • C. Sammut G. I. Webb (eds). Springer New York
    • De Raedt, L. (2010a). Logic of generality. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 624-631). New York: Springer.
    • (2010) Encyclopedia of Machine Learning , pp. 624-631
    • De Raedt, L.1
  • 5
    • 84858338902 scopus 로고    scopus 로고
    • Inductive logic programming
    • C. Sammut G. I. Webb (eds). Springer New York
    • De Raedt, L. D. (2010b). Inductive logic programming. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 529-537). New York: Springer.
    • (2010) Encyclopedia of Machine Learning , pp. 529-537
    • De Raedt, L.D.1
  • 6
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar 2006 Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 1 30 1222.68184 (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 12
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • 10.2307/2279372
    • M. Friedman 1937 The use of ranks to avoid the assumption of normality implicit in the analysis of variance Journal of the American Statistical Association 32 200 675 701 10.2307/2279372
    • (1937) Journal of the American Statistical Association , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1
  • 13
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • 0063.01455
    • M. Friedman 1940 A comparison of alternative tests of significance for the problem of m rankings Journal of the American Statistical Association 11 1 86 92 0063.01455
    • (1940) Journal of the American Statistical Association , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 14
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian Network Classifiers
    • N. Friedman D. Geiger M. Goldszmidt 1997 Bayesian network classifiers Machine Learning 29 2 131 163 0892.68077 10.1023/A:1007465528199 (Pubitemid 127510036)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 15
    • 0037467655 scopus 로고    scopus 로고
    • Iterative Bayes
    • 1961785 1026.68071 10.1016/S0304-3975(02)00179-2
    • J. Gama 2003 Iterative Bayes Theoretical Computer Science 292 2 417 430 1961785 1026.68071 10.1016/S0304-3975(02)00179-2
    • (2003) Theoretical Computer Science , vol.292 , Issue.2 , pp. 417-430
    • Gama, J.1
  • 16
    • 0035528674 scopus 로고    scopus 로고
    • Idiot's Bayes - Not so stupid after all?
    • D. J. Hand K. Yu 2001 Idiot's Bayes: not so stupid after all? International Statistical Review 69 3 385 398 1213.62010 10.1111/j.1751-5823. 2001.tb00465.x (Pubitemid 33392115)
    • (2001) International Statistical Review , vol.69 , Issue.3 , pp. 385-398
    • Hand, D.J.1    Yu, K.2
  • 18
    • 0007159296 scopus 로고
    • Computer-aided diagnosis and the atypical case
    • F. T. de Dombal F. Gremy (eds). North-Holland Amsterdam
    • Hilden, J., & Bjerregaard, B. (1976). Computer-aided diagnosis and the atypical case. In F. T. de Dombal & F. Gremy (Eds.), Decision making and medical care: can information science help (pp. 365-378). Amsterdam: North-Holland.
    • (1976) Decision Making and Medical Care: Can Information Science Help , pp. 365-378
    • Hilden, J.1    Bjerregaard, B.2
  • 19
    • 0001750957 scopus 로고
    • Approximations of the critical region of the Friedman statistic
    • Iman, R. L., & Davenport, J. M. (1980). Approximations of the critical region of the Friedman statistic. In Communications in statistics (pp. 571-595).
    • (1980) Communications in Statistics , pp. 571-595
    • Iman, R.L.1    Davenport, J.M.2
  • 21
    • 0022848955 scopus 로고
    • Feature selection and extraction
    • T. Y. Young K.-S. Fu (eds). Academic Press New York
    • Kittler, J. (1986). Feature selection and extraction. In T. Y. Young & K.-S. Fu (Eds.), Handbook of pattern recognition and image processing. New York: Academic Press.
    • (1986) Handbook of Pattern Recognition and Image Processing
    • Kittler, J.1
  • 24
    • 0003112380 scopus 로고
    • Comparison of inductive and naive Bayesian learning approaches to automatic knowledge acquisition
    • B. Wielinga J. Boose B. Gaines G. Schreiber M. van Someren (eds). IOS Press Amsterdam
    • Kononenko, I. (1990). Comparison of inductive and naive Bayesian learning approaches to automatic knowledge acquisition. In B. Wielinga, J. Boose, B. Gaines, G. Schreiber, & M. van Someren (Eds.), Current trends in knowledge acquisition. Amsterdam: IOS Press.
    • (1990) Current Trends in Knowledge Acquisition
    • Kononenko, I.1
  • 29
    • 33745444617 scopus 로고    scopus 로고
    • Classification using Hierarchical Naïve Bayes models
    • DOI 10.1007/s10994-006-6136-2
    • H. Langseth T. D. Nielsen 2006 Classification using hierarchical naive Bayes models Machine Learning 63 2 135 159 1110.68130 10.1007/s10994-006-6136-2 (1994) (Pubitemid 43951876)
    • (2006) Machine Learning , vol.63 , Issue.2 , pp. 135-159
    • Langseth, H.1    Nielsen, T.D.2
  • 30
    • 84957069091 scopus 로고    scopus 로고
    • Naive Bayes at forty: The independence assumption in information retrieval
    • Springer Berlin
    • Lewis, D. D. (1998). Naive Bayes at forty: the independence assumption in information retrieval. In Proceedings of the tenth European conference on machine learning (pp. 4-15). Berlin: Springer.
    • (1998) Proceedings of the Tenth European Conference on Machine Learning , pp. 4-15
    • Lewis, D.D.1
  • 34
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • MIT Press Cambridge
    • Platt, J. C. (1999). Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In Advances in large margin classifiers. Cambridge: MIT Press.
    • (1999) Advances in Large Margin Classifiers
    • Platt, J.C.1
  • 36
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: A technique for combining boosting and wagging
    • 10.1023/A:1007659514849
    • G. I. Webb 2000 MultiBoosting: a technique for combining boosting and wagging Machine Learning 40 2 159 196 10.1023/A:1007659514849
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 38
    • 14844351034 scopus 로고    scopus 로고
    • Not so naive Bayes: Aggregating one-dependence estimators
    • DOI 10.1007/s10994-005-4258-6
    • G. I. Webb J. Boughton Z. Wang 2005 Not so naive Bayes: aggregating one-dependence estimators Machine Learning 58 1 5 24 1075.68078 10.1007/s10994-005-4258-6 (Pubitemid 40356736)
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 5-24
    • Webb, G.I.1    Boughton, J.R.2    Wang, Z.3
  • 39
    • 84863876681 scopus 로고    scopus 로고
    • Learning by extrapolation from marginal to full-multivariate probability distributions: Decreasingly naive Bayesian classification
    • 10.1007/s10994-011-5263-6
    • G. I. Webb J. Boughton F. Zheng K. M. Ting H. Salem 2011 Learning by extrapolation from marginal to full-multivariate probability distributions: Decreasingly naive Bayesian classification Machine Learning 10.1007/s10994-011- 5263-6
    • (2011) Machine Learning
    • Webb, G.I.1    Boughton, J.2    Zheng, F.3    Ting, K.M.4    Salem, H.5
  • 41
    • 0003259364 scopus 로고    scopus 로고
    • Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
    • Morgan Kaufmann San Francisco
    • Zadrozny, B., & Elkan, C. (2001). Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In Proceedings of the eighteenth international conference on machine learning (pp. 609-616). San Francisco: Morgan Kaufmann.
    • (2001) Proceedings of the Eighteenth International Conference on Machine Learning , pp. 609-616
    • Zadrozny, B.1    Elkan, C.2
  • 43
    • 1842815760 scopus 로고    scopus 로고
    • Latent variable discovery in classification models
    • DOI 10.1016/j.artmed.2003.11.004, PII S0933365703001350
    • N. L. Zhang T. D. Nielsen F. V. Jensen 2004 Latent variable discovery in classification models Artificial Intelligence in Medicine 30 3 283 299 10.1016/j.artmed.2003.11.004 (Pubitemid 38471897)
    • (2004) Artificial Intelligence in Medicine , vol.30 , Issue.3 , pp. 283-299
    • Zhang, N.L.1    Nielsen, T.D.2    Jensen, F.V.3
  • 44
    • 29344462495 scopus 로고    scopus 로고
    • Hidden naive Bayes
    • Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
    • Zhang, H., Jiang, L., & Su, J. (2005). Hidden naive Bayes. In Proceedings of the twentieth national conference on artificial intelligence (pp. 919-924). Menlo Park: AAAI Press. (Pubitemid 43006725)
    • (2005) Proceedings of the National Conference on Artificial Intelligence , vol.2 , pp. 919-924
    • Zhang, H.1    Jiang, L.2    Su, J.3
  • 45
    • 0034301677 scopus 로고    scopus 로고
    • Lazy learning of Bayesian rules
    • 10.1023/A:1007613203719
    • Z. Zheng G. I. Webb 2000 Lazy learning of Bayesian rules Machine Learning 41 1 53 84 10.1023/A:1007613203719
    • (2000) Machine Learning , vol.41 , Issue.1 , pp. 53-84
    • Zheng, Z.1    Webb, G.I.2
  • 48
    • 38049141398 scopus 로고    scopus 로고
    • Finding the right family: Parent and child selection for averaged one-dependence estimators
    • Springer Berlin
    • Zheng, F., & Webb, G. I. (2007). Finding the right family: parent and child selection for averaged one-dependence estimators. In Proceedings of the eighteenth European conference on machine learning (pp. 490-501). Berlin: Springer.
    • (2007) Proceedings of the Eighteenth European Conference on Machine Learning , pp. 490-501
    • Zheng, F.1    Webb, G.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.