-
1
-
-
0030127467
-
Scaling up inductive learning with massive parallelism
-
Provost, F., Aronis, J.: Scaling Up Inductive Learning with Massive Parallelism. Machine Learning, Vol. 23. (1996) 33-46
-
(1996)
Machine Learning
, vol.23
, pp. 33-46
-
-
Provost, F.1
Aronis, J.2
-
2
-
-
0002515248
-
Efficient progressive sampling
-
ACM Press, New York
-
Provost, F., Jensen, D., Oates, T.: Efficient Progressive Sampling. Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining. ACM Press, New York (1999) 22-32
-
(1999)
Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining
, pp. 22-32
-
-
Provost, F.1
Jensen, D.2
Oates, T.3
-
3
-
-
0002139432
-
SPRINT: A scalable parallel classifier for data mining
-
Morgan Kaufmann, San Francisco
-
Shafer, J., Agrawal, R., Mehta, M.: SPRINT: A Scalable Parallel Classifier for Data Mining. Proceedings of the Twenty-Second VLDB Conference. Morgan Kaufmann, San Francisco (1996) 544-555
-
(1996)
Proceedings of the Twenty-Second VLDB Conference
, pp. 544-555
-
-
Shafer, J.1
Agrawal, R.2
Mehta, M.3
-
8
-
-
0003802343
-
-
Wadsworth International, Belmont
-
Breiman, L., Freidman, J. H., Olshen, R. A., Stone, C. J.: Classification and Regression Trees. Wadsworth International, Belmont (1984)
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Freidman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
11
-
-
84864846120
-
RainForest. A framework for fast decision tree induction
-
Morgan Kaufmann, San Mateo
-
Gehrke, J., Ramakrishnan, R., Ganti, V.: RainForest. A Framework for Fast Decision Tree Induction. Proceedings of the Twenty-fourth International Conference on Very Large Databases. Morgan Kaufmann, San Mateo (1998)
-
(1998)
Proceedings of the Twenty-fourth International Conference on Very Large Databases
-
-
Gehrke, J.1
Ramakrishnan, R.2
Ganti, V.3
-
12
-
-
0001828003
-
Cached sufficient statistics for efficient machine learning with large datasets
-
Moore, A., Lee, M. S.: Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets. Journal of Artificial Intelligence Research, Vol. 8. (1998) 67-91
-
(1998)
Journal of Artificial Intelligence Research
, vol.8
, pp. 67-91
-
-
Moore, A.1
Lee, M.S.2
-
13
-
-
84928490167
-
Large scale data mining: Challenges and responses
-
AAAI Press, Menlo Park
-
Chattratichat, J., Darlington, J., Ghanem, M., Guo, Y., Huning, H., Kohler, M., Sutiwaraphun, J., To, H. W., Yang, D.: Large Scale Data Mining: Challenges and Responses. Proceedings of the Third International Conference on Knowledge Discovery and Data Mining. AAAI Press, Menlo Park (1997)
-
(1997)
Proceedings of the Third International Conference on Knowledge Discovery and Data Mining
-
-
Chattratichat, J.1
Darlington, J.2
Ghanem, M.3
Guo, Y.4
Huning, H.5
Kohler, M.6
Sutiwaraphun, J.7
To, H.W.8
Yang, D.9
-
14
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., Schapire, R. E.: A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting. Journal of Computer and System Sciences, Vol. 55. (1997) 95-121
-
(1997)
Journal of Computer and System Sciences
, vol.55
, pp. 95-121
-
-
Freund, Y.1
Schapire, R.E.2
-
15
-
-
0004158427
-
-
Technical Report 460. Department of Statistics, University of California, Berkeley
-
Breiman, L.: Arcing Classifiers. Technical Report 460. Department of Statistics, University of California, Berkeley (1996)
-
(1996)
Arcing Classifiers
-
-
Breiman, L.1
-
16
-
-
0030211964
-
Bagging predictors
-
Breiman, L.: Bagging Predictors. Machine Learning, Vol. 24. (1996) 123-140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
17
-
-
0034247206
-
MultiBoosting: A technique for combining boosting and wagging
-
2000
-
Webb, G. (2000). MultiBoosting: A Technique for Combining Boosting and Wagging. Machine Learning, Vol. 40, (2000) 159-196
-
(2000)
Machine Learning
, vol.40
, pp. 159-196
-
-
Webb, G.1
-
21
-
-
21744462998
-
On Bias, variance, 0/1-loss, and the curse-of-dimensionality
-
Friedman, J. H.: On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality. Data Mining and Knowledge Discovery, Vol. 1. (1997) 55-77
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 55-77
-
-
Friedman, J.H.1
-
22
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging boosting and variants
-
Bauer, E., Kohavi, R.: An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Machine Learning, Vol. 36. (1999) 105-142
-
(1999)
Machine Learning
, vol.36
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
23
-
-
84863387880
-
-
Department of Information and Computer Science, University of California, Irvine
-
Blake, C. L., Merz, C. J. UCI Repository of Machine Learning Databases [http://www.ics.uci.edu/˜mlearn/MLRepository.html]. Department of Information and Computer Science, University of California, Irvine
-
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Merz, C.J.2
|