메뉴 건너뛰기




Volumn 510, Issue , 2014, Pages 1-203

Advanced neural network-based computational schemes for robust fault diagnosis

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84884215917     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-319-01547-7     Document Type: Article
Times cited : (20)

References (181)
  • 9
    • 0031378596 scopus 로고    scopus 로고
    • Survey of robust residual generation and evaluation methods in observer-based fault detection systems
    • Frank, P.M., Ding, S.X.: Survey of robust residual generation and evaluation methods in observer-based fault detection systems. Journal of Process Control 7(6), 403-424 (1997)
    • (1997) Journal of Process Control , vol.7 , Issue.6 , pp. 403-424
    • Frank, P.M.1    Ding, S.X.2
  • 12
    • 8744300418 scopus 로고    scopus 로고
    • Optimal measurement methods for distributed parameter system identification
    • CRC Press, Boca Raton
    • Ucinski, D.: Optimal measurement methods for distributed parameter system identification. Systems and Control Series. CRC Press, Boca Raton (2005)
    • (2005) Systems and Control Series
    • Ucinski, D.1
  • 18
    • 0029394224 scopus 로고
    • Nonlinear parity equation based residual generation for diagnosis of automotive engine faults
    • Krishnaswami, V., Luh, G., Rizzoni, G.: Nonlinear parity equation based residual generation for diagnosis of automotive engine faults. Control Engineering Practice 3(10), 1385-1392 (1995)
    • (1995) Control Engineering Practice , vol.3 , Issue.10 , pp. 1385-1392
    • Krishnaswami, V.1    Luh, G.2    Rizzoni, G.3
  • 20
    • 0242673270 scopus 로고    scopus 로고
    • Nonlinear observers for fault detection and isolation
    • Nijmeijer, H., Fossen, T. (eds.) Springer, Berlin
    • Frank, P., Schreier, G., Garcia, E.: Nonlinear observers for fault detection and isolation. In: Nijmeijer, H., Fossen, T. (eds.) New Directions in Nonlinear Observer Design. Springer, Berlin (1999)
    • (1999) New Directions in Nonlinear Observer Design
    • Frank, P.1    Schreier, G.2    Garcia, E.3
  • 22
    • 29744470901 scopus 로고    scopus 로고
    • Diagnosis strategies and systems. Principles, fuzzy and neural approaches
    • Teodorescu, H., Mlynek, D., Kandel, A., Zimmermann, H. (eds.) Kluwer Academic Publishers, Boston
    • Frank, P.M., Marcu, T.: Diagnosis strategies and systems. principles, fuzzy and neural approaches. In: Teodorescu, H., Mlynek, D., Kandel, A., Zimmermann, H. (eds.) Intelligent Systems and Interfaces. Kluwer Academic Publishers, Boston (2000)
    • (2000) Intelligent Systems and Interfaces
    • Frank, P.M.1    Marcu, T.2
  • 30
    • 80052951147 scopus 로고    scopus 로고
    • New trends in neurocybernetics. Computer methods in material
    • Tadeusiewicz, R.: New trends in neurocybernetics. Computer methods in material. Science (2010)
    • (2010) Science
    • Tadeusiewicz, R.1
  • 35
    • 0031442122 scopus 로고    scopus 로고
    • An artificial NN based approach to fault diagnosis and classification of fluid power systems
    • Watton, J., Pham, D.T.: An artificial NN based approach to fault diagnosis and classification of fluid power systems. Journal of System and Control Engineering 211(4), 307-317 (1997)
    • (1997) Journal of System and Control Engineering , vol.211 , Issue.4 , pp. 307-317
    • Watton, J.1    Pham, D.T.2
  • 36
    • 0344906247 scopus 로고    scopus 로고
    • Neural networks for fault diagnosis of a nuclear fuel processing plant at different operating points
    • Weerasinghe, M., Gomm, J.B., Williams, D.: Neural networks for fault diagnosis of a nuclear fuel processing plant at different operating points. Control Engineering Practice 6(2), 281-289 (1998)
    • (1998) Control Engineering Practice , vol.6 , Issue.2 , pp. 281-289
    • Weerasinghe, M.1    Gomm, J.B.2    Williams, D.3
  • 37
    • 0344494571 scopus 로고    scopus 로고
    • Diagnosis of process valve actuator faults using a multilayer neural network
    • Karpenko, M., Sepehri, N., Scuse, D.: Diagnosis of process valve actuator faults using a multilayer neural network. Control Engineering Practice 11(11), 1289-1299 (2003)
    • (2003) Control Engineering Practice , vol.11 , Issue.11 , pp. 1289-1299
    • Karpenko, M.1    Sepehri, N.2    Scuse, D.3
  • 40
    • 4444329484 scopus 로고    scopus 로고
    • Identification of neural dynamic models for fault detection and isolation: The case of a real sugar evaporation process
    • Patan, K., Parisini, T.: Identification of neural dynamic models for fault detection and isolation: the case of a real sugar evaporation process. Journal of Process Control 15(1), 67-79 (2005)
    • (2005) Journal of Process Control , vol.15 , Issue.1 , pp. 67-79
    • Patan, K.1    Parisini, T.2
  • 42
    • 79959845186 scopus 로고    scopus 로고
    • Gas turbine sensor validation through classification with artificial neural networks
    • Palme, T., Fast, M., Thern, M.: Gas turbine sensor validation through classification with artificial neural networks. Applied Energy 88(11), 3898-3904 (2011)
    • (2011) Applied Energy , vol.88 , Issue.11 , pp. 3898-3904
    • Palme, T.1    Fast, M.2    Thern, M.3
  • 43
    • 0000900876 scopus 로고
    • Skeletonization - A technique for trimming the fat from a network via relevance assessment
    • Touretzky, D. (ed.) Morgan Kaufmann, San Mateo
    • Mozer, M., Smolensky, P.: Skeletonization - a technique for trimming the fat from a network via relevance assessment. In: Touretzky, D. (ed.) Advances in Neural Information Processing Systems 1, pp. 107-115. Morgan Kaufmann, San Mateo (1989)
    • (1989) Advances in Neural Information Processing Systems 1 , pp. 107-115
    • Mozer, M.1    Smolensky, P.2
  • 44
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • Touretzky, D. (ed.) Morgan Kaufmann, San Mateo
    • Fahlman, S.E., Lebierre, C.: The cascade-correlation learning architecture. In: Touretzky, D. (ed.) Advances in Neural Information Processing Systems 1, pp. 524-532. Morgan Kaufmann, San Mateo (1990)
    • (1990) Advances in Neural Information Processing Systems 1 , pp. 524-532
    • Fahlman, S.E.1    Lebierre, C.2
  • 45
    • 84956226983 scopus 로고
    • A convergence theorem for sequential learning in two-layer perceptrons
    • Mach, M., Golea, M., Rujan, P.: A convergence theorem for sequential learning in two-layer perceptrons. Europhysics Letters (11), 487-492 (1990)
    • (1990) Europhysics Letters , vol.11 , pp. 487-492
    • Mach, M.1    Golea, M.2    Rujan, P.3
  • 46
    • 0001234705 scopus 로고
    • Second order derivaties for network prunning: Optimal brain surgeon
    • Touretzky, D. (ed.) Morgan Kaufmann, San Mateo
    • Hassibi, B., Stork, D.: Second order derivaties for network prunning: Optimal brain surgeon. In: Touretzky, D. (ed.) Advances in Neural Information Processing Systems 1, pp. 164-171. Morgan Kaufmann, San Mateo (1989)
    • (1989) Advances in Neural Information Processing Systems 1 , pp. 164-171
    • Hassibi, B.1    Stork, D.2
  • 47
    • 36149031331 scopus 로고
    • Learning feedforward layered networks: The tiling algorithm
    • Mezard, M., Nadal, J.P.: Learning feedforward layered networks: the tiling algorithm. Journal of Physics 22, 2191-2204 (1989)
    • (1989) Journal of Physics , vol.22 , pp. 2191-2204
    • Mezard, M.1    Nadal, J.P.2
  • 48
    • 84884235791 scopus 로고    scopus 로고
    • Optimization of neural network architectures
    • Wilamowski, B., Irwin, J. (eds.) CRC Press, Taylor Francis Group, Boca Raton
    • Obuchowicz, A.: Optimization of neural network architectures. In: Wilamowski, B., Irwin, J. (eds.) Intelligent Systems: The Industrial Electronics Handbook, 2nd edn., vol. 5, pp. 9-1-9-22. CRC Press, Taylor Francis Group, Boca Raton (2011)
    • (2011) Intelligent Systems: The Industrial Electronics Handbook, 2nd Edn. , vol.5 , pp. 91-922
    • Obuchowicz, A.1
  • 49
    • 84873946051 scopus 로고    scopus 로고
    • Multilayer feed-forward artificial neural network integrated with sensitivity based connection pruning method
    • Das, V.V., Stephen, J. (eds.) Springer, Heidelberg
    • Urolagin, S., Prema, K., JayaKrishna, R., Reddy, N.: Multilayer feed-forward artificial neural network integrated with sensitivity based connection pruning method. In: Das, V.V., Stephen, J. (eds.) CNC 2012. LNICST, vol. 108, pp. 68-74. Springer, Heidelberg (2012)
    • CNC 2012. LNICST , vol.108 , Issue.2012 , pp. 68-74
    • Urolagin, S.1    Prema, K.2    Jayakrishna, R.3    Reddy, N.4
  • 54
    • 79951769436 scopus 로고    scopus 로고
    • Vibration signal analysis for electrical fault detection of induction machine using neural networks
    • Su, H., Chong, K.T., Kumar, R.R.: Vibration signal analysis for electrical fault detection of induction machine using neural networks. Neural Computing and Applications 20(2), 183-194 (2011)
    • (2011) Neural Computing and Applications , vol.20 , Issue.2 , pp. 183-194
    • Su, H.1    Chong, K.T.2    Kumar, R.R.3
  • 55
    • 83255176824 scopus 로고    scopus 로고
    • Optimum parameters for fault detection and diagnosis system of batch reaction using multiple neural networks
    • Tan, W., Nor, N., Bakar, M.A., Ahmad, Z., Sata, S.: Optimum parameters for fault detection and diagnosis system of batch reaction using multiple neural networks. Journal of Loss Prevention in the Process Industries 25(1), 138-141 (2012)
    • (2012) Journal of Loss Prevention in the Process Industries , vol.25 , Issue.1 , pp. 138-141
    • Tan, W.1    Nor, N.2    Bakar, M.A.3    Ahmad, Z.4    Sata, S.5
  • 57
    • 79954455895 scopus 로고    scopus 로고
    • Cascade neural-network-based fault classifier for three-phase induction motor
    • Ghate, V.N., Dudul, S.V.: Cascade neural-network-based fault classifier for three-phase induction motor. IEEE Transactions on Industrial Electronics 58(5), 1555-1563 (2011)
    • (2011) IEEE Transactions on Industrial Electronics , vol.58 , Issue.5 , pp. 1555-1563
    • Ghate, V.N.1    Dudul, S.V.2
  • 60
    • 33751349702 scopus 로고    scopus 로고
    • Unbiased minimum-variance input and state estimation for linear discrete-time systems
    • Gillijns, S., Moor, B.D.: Unbiased minimum-variance input and state estimation for linear discrete-time systems. Automatica 43, 111-116 (2007)
    • (2007) Automatica , vol.43 , pp. 111-116
    • Gillijns, S.1    Moor, B.D.2
  • 61
  • 62
    • 84880054262 scopus 로고    scopus 로고
    • Robust sensor and actuator fault diagnosis with GMDH neural networks
    • Rojas, I., Joya, G., Gabestany, J. (eds.) Springer, Heidelberg
    • Witczak, M., Mrugalski, M., Korbicz, J.: Robust sensor and actuator fault diagnosis with GMDH neural networks. In: Rojas, I., Joya, G., Gabestany, J. (eds.) IWANN 2013, Part I. LNCS, vol. 7902, pp. 96-105. Springer, Heidelberg (2013)
    • (2013) IWANN 2013, Part I. LNCS , vol.7902 , pp. 96-105
    • Witczak, M.1    Mrugalski, M.2    Korbicz, J.3
  • 67
    • 84859051895 scopus 로고    scopus 로고
    • Fault-tolerant control strategy for actuator faults using lpv techniques: Application to a two degree of freedom helicopter
    • De Oca, S., Puig, V., Witczak, M., Dziekan, L.: Fault-tolerant control strategy for actuator faults using lpv techniques: Application to a two degree of freedom helicopter. International Journal of Applied Mathematics and Computer Science 22(1), 161-171 (2012)
    • (2012) International Journal of Applied Mathematics and Computer Science , vol.22 , Issue.1 , pp. 161-171
    • De Oca, S.1    Puig, V.2    Witczak, M.3    Dziekan, L.4
  • 71
    • 46149124817 scopus 로고    scopus 로고
    • Confidence estimation of GMDH neural networks and its application in fault detection system
    • Korbicz, J., Mrugalski, M.: Confidence estimation of GMDH neural networks and its application in fault detection system. International Journal of System Science 39(8), 783-800 (2008)
    • (2008) International Journal of System Science , vol.39 , Issue.8 , pp. 783-800
    • Korbicz, J.1    Mrugalski, M.2
  • 72
    • 33644630868 scopus 로고    scopus 로고
    • Parameter estimation of dynamic GMDH neural networks with the bounded-error technique
    • Mrugalski, M., Witczak, M.: Parameter estimation of dynamic GMDH neural networks with the bounded-error technique. Journal of Applied Computer Science 10(1), 77-90 (2002)
    • (2002) Journal of Applied Computer Science , vol.10 , Issue.1 , pp. 77-90
    • Mrugalski, M.1    Witczak, M.2
  • 73
    • 84884240718 scopus 로고    scopus 로고
    • Artificial neural networks in diagnostic systems
    • Korbicz, J., Koscielny, J., Kowalczuk, Z., Cholewa, W. (eds.) WNT, Warsaw
    • Patan, K., Korbicz, J., Mrugalski, M.: Artificial neural networks in diagnostic systems. In: Korbicz, J., Koscielny, J., Kowalczuk, Z., Cholewa, W. (eds.) Fault Diagnosis. Models, Artificial Intelligence, Applications, pp. 311-351. WNT, Warsaw (2002)
    • (2002) Fault Diagnosis. Models, Artificial Intelligence, Applications , pp. 311-351
    • Patan, K.1    Korbicz, J.2    Mrugalski, M.3
  • 74
    • 46149090505 scopus 로고    scopus 로고
    • Dynamic GMDH type neural networks
    • Rutkowski, L., Kacprzyk, J. (eds.) 6th International Conference on Neural Networks and Soft Computing, Zakopane, Poland, June 11-15, 2002
    • Mrugalski, M., Arinton, E., Korbicz, J.: Dynamic GMDH type neural networks. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. Advances in Soft Computing, pp. 698-703 (2003); 6th International Conference on Neural Networks and Soft Computing, Zakopane, Poland, June 11-15 (2002)
    • (2003) Neural Networks and Soft Computing. Advances in Soft Computing , pp. 698-703
    • Mrugalski, M.1    Arinton, E.2    Korbicz, J.3
  • 77
    • 84880059802 scopus 로고    scopus 로고
    • An unscented kalman filter in designing dynamic GMDH neural networks for robust fault detection
    • Mrugalski, M.: An unscented kalman filter in designing dynamic GMDH neural networks for robust fault detection. International Journal of Applied Mathematics and Computer Science 23(1), 157-169 (2013)
    • (2013) International Journal of Applied Mathematics and Computer Science , vol.23 , Issue.1 , pp. 157-169
    • Mrugalski, M.1
  • 78
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation
    • Widrow, B., Lehr, M.A.: 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proceedings of the IEEE 78(9), 1415-1442 (1990)
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.A.2
  • 79
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1(2), 270-280 (1989)
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 80
    • 0028392406 scopus 로고
    • Locally recurrent globally feedforward networks: A critical review of architectures
    • Tsoi, A., Back, A.D.: Locally recurrent globally feedforward networks: a critical review of architectures. IEEE Transactions on Neural Networks 5(2), 229- 239 (1994)
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 229-239
    • Tsoi, A.1    Back, A.D.2
  • 81
    • 58249092623 scopus 로고    scopus 로고
    • State estimation for jumping recurrent neural networks with discrete and distributed delays
    • Wang, Z., Liu, Y., Liu, X.: State estimation for jumping recurrent neural networks with discrete and distributed delays. Neural Networks 22(1), 41-48 (2009)
    • (2009) Neural Networks , vol.22 , Issue.1 , pp. 41-48
    • Wang, Z.1    Liu, Y.2    Liu, X.3
  • 82
    • 69449087976 scopus 로고    scopus 로고
    • Generalized neuron: Feedforward and recurrent architectures
    • Kulkarni, R., Venayagamoorthy, G.: Generalized neuron: Feedforward and recurrent architectures. Neural Networks 22(7), 1011-1017 (2009)
    • (2009) Neural Networks , vol.22 , Issue.7 , pp. 1011-1017
    • Kulkarni, R.1    Venayagamoorthy, G.2
  • 84
    • 67349207087 scopus 로고    scopus 로고
    • Stability analysis of static recurrent neural networks using delay-partitioning and projection
    • Du, B., Lam, J.: Stability analysis of static recurrent neural networks using delay-partitioning and projection. Neural Networks 22(4), 343-347 (2009)
    • (2009) Neural Networks , vol.22 , Issue.4 , pp. 343-347
    • Du, B.1    Lam, J.2
  • 85
    • 0026954775 scopus 로고
    • Neural networks for control systems - A survey
    • Hunt, K.J., Sbarbaro, D., Zbikowski, R., Gawthrop, P.J.: Neural networks for control systems - a survey. Automatica 28(6), 1083-1112 (1992)
    • (1992) Automatica , vol.28 , Issue.6 , pp. 1083-1112
    • Hunt, K.J.1    Sbarbaro, D.2    Zbikowski, R.3    Gawthrop, P.J.4
  • 86
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks 1(1), 12-18 (1990)
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 12-18
    • Narendra, K.S.1    Parthasarathy, K.2
  • 89
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J.L.: Finding structure in time. Cognitive Science 14, 179-211 (1990)
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 90
    • 0028391673 scopus 로고
    • Application of the recurrent multilayer perceptron in modelling complex process dynamics
    • Parlos, A.G., Chong, K.T., Atiya, A.F.: Application of the recurrent multilayer perceptron in modelling complex process dynamics. IEEE Transactions on Neural Networks 5(2), 255-266 (1994)
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 255-266
    • Parlos, A.G.1    Chong, K.T.2    Atiya, A.F.3
  • 91
    • 0034271110 scopus 로고    scopus 로고
    • On overfitting, generalization, and randomly expanded training sets
    • Karystinos, G.N., Pados, D.A.: On overfitting, generalization, and randomly expanded training sets. IEEE Trans. of Neural Networks 11(5), 1050-1057 (2000)
    • (2000) IEEE Trans. Of Neural Networks , vol.11 , Issue.5 , pp. 1050-1057
    • Karystinos, G.N.1    Pados, D.A.2
  • 92
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. of Neural Networks 10(5), 988-999 (1999)
    • (1999) IEEE Trans. Of Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 96
    • 0030149064 scopus 로고    scopus 로고
    • Randomness in generalization ability: A source to impove it
    • Sarkar, D.: Randomness in generalization ability: A source to impove it. IEEE Trans. of Neural Networks 7(3), 676-685 (1996)
    • (1996) IEEE Trans. Of Neural Networks , vol.7 , Issue.3 , pp. 676-685
    • Sarkar, D.1
  • 98
    • 0041770497 scopus 로고
    • Emergence of grandmother memory in feedforward networks: Learning with noise and forgetfulness
    • Waltz, D., Feldman, J. (eds.) Ablex, Norwood
    • Scalettar, R., Yee, A.: Emergence of grandmother memory in feedforward networks: Learning with noise and forgetfulness. In: Waltz, D., Feldman, J. (eds.) Connectionist Models and Their Implicetions: Readings from Cognitive Science, pp. 309-332. Ablex, Norwood (1988)
    • (1988) Connectionist Models and Their Implicetions: Readings from Cognitive Science , pp. 309-332
    • Scalettar, R.1    Yee, A.2
  • 99
    • 0002290223 scopus 로고
    • Efficient parallel learning alghoritms for neural networks
    • Touretzky, D. (ed.) Morgan Kaufmann, San Mateo
    • Kramer, A.H., Sangiowani-Vincentelli, A.: Efficient parallel learning alghoritms for neural networks. In: Touretzky, D. (ed.) Advances in Neural Information Processing Systems 1, pp. 40-48. Morgan Kaufmann, San Mateo (1989)
    • (1989) Advances in Neural Information Processing Systems , vol.1 , pp. 40-48
    • Kramer, A.H.1    Sangiowani-Vincentelli, A.2
  • 100
    • 0000473247 scopus 로고
    • A back propagation alghoritm with optimal use of hiden units
    • Touretzky, D. (ed.) Morgan Kaufmann, San Mateo
    • Chauvin, Y.: A back propagation alghoritm with optimal use of hiden units. In: Touretzky, D. (ed.) Advances in Neural Information Processing Systems 1, pp. 519-526. Morgan Kaufmann, San Mateo (1989)
    • (1989) Advances in Neural Information Processing Systems , vol.1 , pp. 519-526
    • Chauvin, Y.1
  • 102
    • 0029191163 scopus 로고
    • Off-line performance maximization in feedforward neural networks by applying virtual neurons and covariance transformations
    • IEEE, Seattle
    • Alippi, C., Petracca, R., Piuri, V.: Off-line performance maximization in feedforward neural networks by applying virtual neurons and covariance transformations. In: 1995 IEEE International Symposium onCircuits and Systems, ISCAS 1995, vol. 3, pp. 2197-2200. IEEE, Seattle (1995)
    • (1995) 1995 IEEE International Symposium on Circuits and Systems, ISCAS 1995 , vol.3 , pp. 2197-2200
    • Alippi, C.1    Petracca, R.2    Piuri, V.3
  • 103
    • 0000783575 scopus 로고
    • The upstart alghoritm: A method for constructing and training feedforwars neural networks
    • Frean, M.: The upstart alghoritm: A method for constructing and training feedforwars neural networks. Neural Computation 2, 198-209 (1990)
    • (1990) Neural Computation , vol.2 , pp. 198-209
    • Frean, M.1
  • 104
    • 84945797434 scopus 로고
    • Dynamic node creation
    • Ash, T.: Dynamic node creation. Connection Science 1(4), 365-375 (1989)
    • (1989) Connection Science , vol.1 , Issue.4 , pp. 365-375
    • Ash, T.1
  • 105
    • 0028319326 scopus 로고
    • A procedure for determining the topology of multilayer feedforward neural networks
    • Wang, Z., Di Massimo, C., Tham, M.T., Morris, A.J.: A procedure for determining the topology of multilayer feedforward neural networks. Neural Networks 7(2), 291-300 (1994)
    • (1994) Neural Networks , vol.7 , Issue.2 , pp. 291-300
    • Wang, Z.1    Di Massimo, C.2    Tham, M.T.3    Morris, A.J.4
  • 107
    • 0026397496 scopus 로고
    • Optimization and training of feedforward neural networks by genetic algorithms
    • Boumemouth, UK
    • Marshall, S.J., Harrison, R.F.: Optimization and training of feedforward neural networks by genetic algorithms. In: Int. Conf, Artificial Neural Networks, Boumemouth, UK, pp. 39-42 (1991)
    • (1991) Int. Conf, Artificial Neural Networks , pp. 39-42
    • Marshall, S.J.1    Harrison, R.F.2
  • 108
    • 0027615025 scopus 로고
    • Structural evolution of neural networks having arbitrary connections by a genetic method
    • Nagao, T., Agui, T., Nagahashi, H.: Structural evolution of neural networks having arbitrary connections by a genetic method. IEICE Trans. Inf. and Syst. E76-D(6), 689-697 (1993)
    • (1993) IEICE Trans. Inf. and Syst. E76-D , vol.6 , pp. 689-697
    • Nagao, T.1    Agui, T.2    Nagahashi, H.3
  • 109
    • 70449591855 scopus 로고    scopus 로고
    • Genetic algorithms for network optimization
    • Abraham, A., Snasel, V., Wegrzyn-Wolska, K. (eds.) IEEE Computer Society
    • Kosinski, W., Mikolajewski, D.: Genetic algorithms for network optimization. In: Abraham, A., Snasel, V., Wegrzyn-Wolska, K. (eds.) CASoN, pp. 171-176. IEEE Computer Society (2009)
    • (2009) CASoN , pp. 171-176
    • Kosinski, W.1    Mikolajewski, D.2
  • 110
    • 84884239311 scopus 로고    scopus 로고
    • Evolutionary algorithms in optimisation of a multilayer feedforward neural network architecture
    • Institute of Control Engeneering, Technical University of Szczecin, Uczelniane Politechniki Szczecinskiej, Szczecin, Wydaw, Miedzyzdroje, Polska
    • Obuchowicz, A., Politowicz, K.: Evolutionary algorithms in optimisation of a multilayer feedforward neural network architecture. In: Proceedings of the Fourth International Symposium Methods and Models in Automation and Robotics, MMAR 1997, vol. 2, pp. 739-743. Institute of Control Engeneering Technical University of Szczecin, Uczelniane Politechniki Szczecinskiej, Szczecin, Wydaw, Miedzyzdroje, Polska (1997)
    • (1997) Proceedings of the Fourth International Symposium Methods and Models in Automation and Robotics, MMAR 1997 , vol.2 , pp. 739-743
    • Obuchowicz, A.1    Politowicz, K.2
  • 111
    • 84862800910 scopus 로고    scopus 로고
    • An evolutionary constructive and pruning algorithm for artificial neural networks and its prediction applications
    • Yang, S., Chen, Y.: An evolutionary constructive and pruning algorithm for artificial neural networks and its prediction applications. Neurocomputing 86(0), 140-149 (2012)
    • (2012) Neurocomputing , vol.86 , Issue.0 , pp. 140-149
    • Yang, S.1    Chen, Y.2
  • 112
    • 0031269563 scopus 로고    scopus 로고
    • Structure optimization of neural networks with the a-algorithm
    • Doering, A., Galicki, M., Witte, H.: Structure optimization of neural networks with the a-algorithm. IEEE Transactions on Neural Networks 8(6), 1434- 1445 (1997)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.6 , pp. 1434-1445
    • Doering, A.1    Galicki, M.2    Witte, H.3
  • 113
    • 29944445009 scopus 로고    scopus 로고
    • Architecture optimization of a network of dynamic neurons using the a algorithm
    • EUFIT 1999, Aachen, Niemcy CD-ROM
    • Obuchowicz, A.: Architecture optimization of a network of dynamic neurons using the a algorithm. In: 7th European Congress Intelligent Techniques and Soft Computing, EUFIT 1999, Aachen, Niemcy (1999) CD-ROM
    • (1999) 7th European Congress Intelligent Techniques and Soft Computing
    • Obuchowicz, A.1
  • 114
    • 0008440530 scopus 로고
    • Designing application-specific neural networks using genetic algorithms
    • Touretzky, D. (ed.) Morgan Kaufmann, San Mateo
    • Harp, S.A., Samad, T., Guha, A.: Designing application-specific neural networks using genetic algorithms. In: Touretzky, D. (ed.) Advances in Neural Information Processing Systems 1, pp. 447-454. Morgan Kaufmann, San Mateo (1989)
    • (1989) Advances in Neural Information Processing Systems , vol.1 , pp. 447-454
    • Harp, S.A.1    Samad, T.2    Guha, A.3
  • 115
    • 0002933170 scopus 로고
    • Designing neural networks using genetic algorithms with graph generation system
    • Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex System 4, 461-486 (1990)
    • (1990) Complex System , vol.4 , pp. 461-486
    • Kitano, H.1
  • 116
    • 84865859714 scopus 로고    scopus 로고
    • GMDH neural networks
    • Wilamowski, B., Irwin, J. (eds.) 2nd edn. CRC Press, Taylor Francis Group, Boca Raton
    • Mrugalski, M., Korbicz, J.: GMDH neural networks. In: Wilamowski, B., Irwin, J. (eds.) Intelligent systems: The Industrial Electronics Handbook, 2nd edn., vol. 5, pp. 8-1-8-21. CRC Press, Taylor Francis Group, Boca Raton (2011)
    • (2011) Intelligent Systems: The Industrial Electronics Handbook , vol.5 , pp. 81-821
    • Mrugalski, M.1    Korbicz, J.2
  • 117
    • 84879255534 scopus 로고    scopus 로고
    • Feedback GMDH-type neural network algorithm using prediction error criterion defined as aic
    • Kondo, T., Ueno, J., Takao, S.: Feedback GMDH-type neural network algorithm using prediction error criterion defined as aic. Intelligent Decision Technologies, 313-322 (2012)
    • (2012) Intelligent Decision Technologies , pp. 313-322
    • Kondo, T.1    Ueno, J.2    Takao, S.3
  • 120
    • 84884245156 scopus 로고    scopus 로고
    • Systems identification with GMDH neural networks: A multi-dimensional case
    • Pearson, D., Steele, N., Albrecht, R. (eds.) Springer, Vienna
    • Mrugalski, M., Arinton, E., Korbicz, J.: Systems identification with GMDH neural networks: a multi-dimensional case. In: Pearson, D., Steele, N., Albrecht, R. (eds.) Artificial Neural Nets and Genetic Algorithms, pp. 115-120. Springer, Vienna (2003)
    • (2003) Artificial Neural Nets and Genetic Algorithms , pp. 115-120
    • Mrugalski, M.1    Arinton, E.2    Korbicz, J.3
  • 121
    • 0001657855 scopus 로고
    • Local feedback multilayered networks
    • Fasconi, P., Gori, M., Soda, G.: Local feedback multilayered networks. Neural Computation 4(1), 120-130 (1992)
    • (1992) Neural Computation , vol.4 , Issue.1 , pp. 120-130
    • Fasconi, P.1    Gori, M.2    Soda, G.3
  • 122
    • 0000029787 scopus 로고
    • Fir and iir synapses. A new neural network architectures for time series modelling
    • Back, A., Tsoi, A.: Fir and iir synapses. a new neural network architectures for time series modelling. Neural Computation 3(3), 375-385 (1991)
    • (1991) Neural Computation , vol.3 , Issue.3 , pp. 375-385
    • Back, A.1    Tsoi, A.2
  • 123
    • 0024903887 scopus 로고
    • A learning algorithm for capturing the dynamic nature of speech
    • Gori, M., Bengio, Y., Mori, R.D.: BPS: A learning algorithm for capturing the dynamic nature of speech. In: Proc. Int. Joint Conf. Neural Networks, vol. II, pp. 417-423 (1989)
    • (1989) Proc. Int. Joint Conf. Neural Networks , vol.2 , pp. 417-423
    • Gori, M.1    Bengio, Y.2    Mori, R.D.3
  • 125
    • 0035422118 scopus 로고    scopus 로고
    • Data-based construction of feedback-corrected nonlinear prediction model using feedback neural networks
    • Pan, Y., Sung, S., Lee, J.: Data-based construction of feedback-corrected nonlinear prediction model using feedback neural networks. Control Engineering Practice 9(8), 859-867 (2001)
    • (2001) Control Engineering Practice , vol.9 , Issue.8 , pp. 859-867
    • Pan, Y.1    Sung, S.2    Lee, J.3
  • 126
    • 0032144732 scopus 로고    scopus 로고
    • State space neural network. Properties and appliation
    • Zamarreno, J.M., Vega, P.: State space neural network. properties and appliation. Neural Networks 11(6), 1099-1112 (1998)
    • (1998) Neural Networks , vol.11 , Issue.6 , pp. 1099-1112
    • Zamarreno, J.M.1    Vega, P.2
  • 127
    • 33750143676 scopus 로고    scopus 로고
    • On uniform global asymptotic stability of nonlinear discretetime systems with applications
    • Lee, T., Jiang, Z.: On uniform global asymptotic stability of nonlinear discretetime systems with applications. IEEE Trans. Automatic Control 51(10), 1644- 1660 (2006)
    • (2006) IEEE Trans. Automatic Control , vol.51 , Issue.10 , pp. 1644-1660
    • Lee, T.1    Jiang, Z.2
  • 128
    • 9444280135 scopus 로고    scopus 로고
    • Evolutionary algorithms in global optimization and dynamic system diagnosis
    • Lubuskie Scientific Society, Zielona Gora ISBN: 83-88317-02-4
    • Obuchowicz, A.: Evolutionary Algorithms in Global Optimization and Dynamic System Diagnosis. Monographs, vol. 3. Lubuskie Scientific Society, Zielona Gora (2003) ISBN: 83-88317-02-4
    • (2003) Monographs , vol.3
    • Obuchowicz, A.1
  • 130
    • 84865523686 scopus 로고    scopus 로고
    • Bounded error identification of hammerstein systems through sparse polynomial optimization
    • Cerone, V., Piga, D., Regruto, D.: Bounded error identification of hammerstein systems through sparse polynomial optimization. Automatica (2012)
    • (2012) Automatica
    • Cerone, V.1    Piga, D.2    Regruto, D.3
  • 131
    • 84884226079 scopus 로고    scopus 로고
    • Modified quasi-obe algorithm with improved numerical properties
    • Arablouei, R., Dogancay, K.: Modified quasi-obe algorithm with improved numerical properties. Signal Processing (2012)
    • (2012) Signal Processing
    • Arablouei, R.1    Dogancay, K.2
  • 132
    • 17644401695 scopus 로고    scopus 로고
    • Guaranteed state estimation by zonotopes
    • Alamo, T., Bravo, J., Camacho, E.: Guaranteed state estimation by zonotopes. Automatica 41(6), 1035-1043 (2005)
    • (2005) Automatica , vol.41 , Issue.6 , pp. 1035-1043
    • Alamo, T.1    Bravo, J.2    Camacho, E.3
  • 133
    • 33746060498 scopus 로고    scopus 로고
    • Bounded error identification of systems with time-varying parameters
    • Bravo, J., Alamo, T., Camacho, E.: Bounded error identification of systems with time-varying parameters. IEEE Transactions on Automatic Control 51(7), 1144-1150 (2006)
    • (2006) IEEE Transactions on Automatic Control , vol.51 , Issue.7 , pp. 1144-1150
    • Bravo, J.1    Alamo, T.2    Camacho, E.3
  • 135
    • 84884234784 scopus 로고    scopus 로고
    • Robust fault diagnosis based on the parameters identification via outer bounding ellipsoid algorithm
    • Malinowski, K., Rutkowski, L. (eds.) Academic Publishing House EXIT, Warsaw
    • Mrugalski, M.: Robust fault diagnosis based on the parameters identification via outer bounding ellipsoid algorithm. In: Malinowski, K., Rutkowski, L. (eds.) Recent Advances in Control and Automation. Challenging Problems of Science: Control and Automation, pp. 418-427. Academic Publishing House EXIT, Warsaw (2008)
    • (2008) Recent Advances in Control and Automation. Challenging Problems of Science: Control and Automation , pp. 418-427
    • Mrugalski, M.1
  • 138
    • 0016359957 scopus 로고
    • Strongly consistent parameter estimation by the introduction of strong instrumental variables
    • Finigan, B., Rowe, I.H.: Strongly consistent parameter estimation by the introduction of strong instrumental variables. IEEE Trans. Automatic Control AC19(6), 825-830 (1974)
    • (1974) IEEE Trans. Automatic Control AC19 , vol.6 , pp. 825-830
    • Finigan, B.1    Rowe, I.H.2
  • 140
    • 84884237029 scopus 로고    scopus 로고
    • Design and Quality Control of Products Robust to Model Uncertainty and Disturbances
    • Design and Quality Control of Products Robust to Model Uncertainty and Disturbances
  • 141
    • 0035505634 scopus 로고    scopus 로고
    • Confidence estimation methods for neural networks: A practical comparison
    • Papadopoulos, G., Edawrds, P.J., Murray, A.F.: Confidence estimation methods for neural networks: A practical comparison. IEEE Transactions on Neural Networks 12(6), 1279-1287 (2001)
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1279-1287
    • Papadopoulos, G.1    Edawrds, P.J.2    Murray, A.F.3
  • 143
    • 0025568468 scopus 로고
    • Fast and robust algorithm to compute exact polytope parameter bounds
    • Mo, S.H., Norton, J.P.: Fast and robust algorithm to compute exact polytope parameter bounds. Mathematics and Computers in Simulation 32, 481-493 (1990)
    • (1990) Mathematics and Computers in Simulation , vol.32 , pp. 481-493
    • Mo, S.H.1    Norton, J.P.2
  • 144
    • 38249018581 scopus 로고
    • A compact algorithm for the intersection and approximation of n-dimensional polytopes
    • Broman, V., Shensa, M.J.: A compact algorithm for the intersection and approximation of n-dimensional polytopes. Math. and Comp. Math. and Comp. in Simulation (32), 469-480 (1990)
    • (1990) Math. And Comp. Math. And Comp. In Simulation , vol.32 , pp. 469-480
    • Broman, V.1    Shensa, M.J.2
  • 145
    • 0042013001 scopus 로고    scopus 로고
    • Recursive algorithms for inner ellipsoidal approximation of convex polytopes
    • Dabbenea, F., Gayb, P., Polyak, B.T.: Recursive algorithms for inner ellipsoidal approximation of convex polytopes. Automatica 39, 1773-1781 (2003)
    • (2003) Automatica , vol.39 , pp. 1773-1781
    • Dabbenea, F.1    Gayb, P.2    Polyak, B.T.3
  • 147
    • 38249017565 scopus 로고
    • Recursive membership set estimation for output-error models
    • Clement, T., Gentil, S.: Recursive membership set estimation for output-error models. Mathematics and Computers in Simulation 32(5-6), 505-513 (1990)
    • (1990) Mathematics and Computers in Simulation , vol.32 , Issue.5-6 , pp. 505-513
    • Clement, T.1    Gentil, S.2
  • 148
    • 0020103099 scopus 로고
    • On the value of information in system identification - Bounded noise case
    • Fogel, E., Huang, Y.F.: On the value of information in system identification - bounded noise case. Automatica (18), 229-238 (1982)
    • (1982) Automatica , vol.18 , pp. 229-238
    • Fogel, E.1    Huang, Y.F.2
  • 150
    • 0023345176 scopus 로고
    • Asymptotically convergent modified recursive least-squares with data-dependent updating and forgetting factor for systems with bounded noise
    • Dasgupta, S., Huang, Y.-F.: Asymptotically convergent modified recursive least-squares with data-dependent updating and forgetting factor for systems with bounded noise. IEEE Trans. Inf. Theory 33(3), 383-392 (1987)
    • (1987) IEEE Trans. Inf. Theory , vol.33 , Issue.3 , pp. 383-392
    • Dasgupta, S.1    Huang, Y.-F.2
  • 152
    • 33644614517 scopus 로고    scopus 로고
    • A GMDH neural network based approach to robust fault detection and its application to solve the damadics benchmark problem
    • Witczak, M., Korbicz, J., Mrugalski, M., Patton, R.: A GMDH neural network based approach to robust fault detection and its application to solve the damadics benchmark problem. Control Engineering Practice 14(6), 671-683 (2006)
    • (2006) Control Engineering Practice , vol.14 , Issue.6 , pp. 671-683
    • Witczak, M.1    Korbicz, J.2    Mrugalski, M.3    Patton, R.4
  • 155
    • 46149111957 scopus 로고    scopus 로고
    • Confidence estimation of the multilayer perceptron and its application in fault detection systems
    • Mrugalski, M., Witczak, M., Korbicz, J.: Confidence estimation of the multilayer perceptron and its application in fault detection systems. Engineering Applications of Artificial Intelligence 21(6), 895-906 (2008)
    • (2008) Engineering Applications of Artificial Intelligence , vol.21 , Issue.6 , pp. 895-906
    • Mrugalski, M.1    Witczak, M.2    Korbicz, J.3
  • 158
    • 38049094685 scopus 로고    scopus 로고
    • Least mean square vs. Outer bounding ellipsoid algorithm in confidence estimation of the GMDH neural networks
    • Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) Springer, Heidelberg
    • Mrugalski, M., Korbicz, J.: Least mean square vs. Outer bounding ellipsoid algorithm in confidence estimation of the GMDH neural networks. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 19-26. Springer, Heidelberg (2007)
    • (2007) ICANNGA 2007. LNCS , vol.4432 , pp. 19-26
    • Mrugalski, M.1    Korbicz, J.2
  • 160
    • 84884255570 scopus 로고    scopus 로고
    • Uncertainty of dynamic GMDH neural models in robust fault detection systems
    • Grzech, A., Swiatek, P., Drapala, J. (eds.) Computer Science. Academic Publishing House EXIT, Warsaw ISBN: 978-83-60434-77-2
    • Mrugalski, M., Korbicz, J.: Uncertainty of dynamic GMDH neural models in robust fault detection systems. In: Grzech, A., Swiatek, P., Drapa-la, J. (eds.) Advances in Systems Science, pp. 211-220. Computer Science. Academic Publishing House EXIT, Warsaw (2010) ISBN: 978-83-60434-77-2
    • (2010) Advances in Systems Science , pp. 211-220
    • Mrugalski, M.1    Korbicz, J.2
  • 161
    • 79960729772 scopus 로고    scopus 로고
    • A GMDH neural network based approach to passive robust fault detection using a constraints satisfaction backward test
    • Prague, Czech Republic, [B.m.], [6] CD-ROM
    • Puig, V., Mrugalski, M., Ingimundarson, A., Quevedo, J., Witczak, M., Korbicz, J.: A GMDH neural network based approach to passive robust fault detection using a constraints satisfaction backward test. In: 16th IFAC World Congress, Prague, Czech Republic, [B.m.], [6] CD-ROM (2005)
    • (2005) 16th IFAC World Congress
    • Puig, V.1    Mrugalski, M.2    Ingimundarson, A.3    Quevedo, J.4    Witczak, M.5    Korbicz, J.6
  • 162
    • 84983150579 scopus 로고    scopus 로고
    • Robust fault detection using zonotope-based GMDH neural network
    • Korbicz, J., Kowal, M. (eds.) Springer, Heidelberg
    • Mrugalski, M.: Robust fault detection using zonotope-based GMDH neural network. In: Korbicz, J., Kowal, M. (eds.) Intelligent Systems in Technical and Medical Diagnostics. AISC, vol. 230, pp. 101-112. Springer, Heidelberg (2013)
    • Intelligent Systems in Technical and Medical Diagnostics. AISC , vol.230 , Issue.2013 , pp. 101-112
    • Mrugalski, M.1
  • 163
    • 0004810346 scopus 로고
    • Reformulation of parameter identification with unknown-but-bounded errors
    • Clement, T., Gentil, S.: Reformulation of parameter identification with unknown-but-bounded errors. Mathematics and Computers in Simulation 30(3), 257-270 (1988)
    • (1988) Mathematics and Computers in Simulation , vol.30 , Issue.3 , pp. 257-270
    • Clement, T.1    Gentil, S.2
  • 168
    • 34047242688 scopus 로고    scopus 로고
    • Desing of an extended unknown input observer with stochastic robustness techniques and evolutionary algorithms
    • Witczak, M., Pretki, P.: Desing of an extended unknown input observer with stochastic robustness techniques and evolutionary algorithms. International Journal of Control 80(5), 749-762 (2007)
    • (2007) International Journal of Control , vol.80 , Issue.5 , pp. 749-762
    • Witczak, M.1    Pretki, P.2
  • 169
    • 33751349702 scopus 로고    scopus 로고
    • Unbiased minimum-variance input and state estimation for linear discrete-time systems
    • Gillijns, S., De Moor, B.: Unbiased minimum-variance input and state estimation for linear discrete-time systems. Automatica 43, 111-116 (2007)
    • (2007) Automatica , vol.43 , pp. 111-116
    • Gillijns, S.1    De Moor, B.2
  • 171
    • 36049008101 scopus 로고    scopus 로고
    • Observer for a class of Lipschitz systems with extension to H∞ performance analysis
    • Zemouche, A., Boutayeb, M., Bara, G.: Observer for a class of Lipschitz systems with extension to H∞ performance analysis. Systems and Control Letters 57(1), 18-27 (2008)
    • (2008) Systems and Control Letters , vol.57 , Issue.1 , pp. 18-27
    • Zemouche, A.1    Boutayeb, M.2    Bara, G.3
  • 172
    • 0035878013 scopus 로고    scopus 로고
    • Robust stability and stabilization of discrete-time non-linear: The lmi approach
    • Stipanovic, D., Siljak, D.: Robust stability and stabilization of discrete-time non-linear: the lmi approach. International Journal of Control 74(5), 873-879 (2001)
    • (2001) International Journal of Control , vol.74 , Issue.5 , pp. 873-879
    • Stipanovic, D.1    Siljak, D.2
  • 173
    • 59749105865 scopus 로고    scopus 로고
    • Lmi optimization approach to robust H∞ observer design and static output feedback stabilization for non-linear uncertain systems
    • Abbaszadeh, M., Marquez, H.: Lmi optimization approach to robust H∞ observer design and static output feedback stabilization for non-linear uncertain systems. International Journal of Robust and Nonlinear Control 19(3), 313- 340 (2008)
    • (2008) International Journal of Robust and Nonlinear Control , vol.19 , Issue.3 , pp. 313-340
    • Abbaszadeh, M.1    Marquez, H.2
  • 174
    • 0032025028 scopus 로고    scopus 로고
    • Observers for Lipschitz non-linear systems
    • Rajamani, R.: Observers for Lipschitz non-linear systems. IEEE Transactions on Automatic Control 43(3), 397-401 (1998)
    • (1998) IEEE Transactions on Automatic Control , vol.43 , Issue.3 , pp. 397-401
    • Rajamani, R.1
  • 175
    • 27844498226 scopus 로고    scopus 로고
    • H∞ synthesis of unknown input observers for non-linear lipschitz systems
    • Pertew, A.M., Marquez, H.J., Zhao, Q.: H∞ synthesis of unknown input observers for non-linear lipschitz systems. International Journal of Control 78(15), 1155-1165 (2005)
    • (2005) International Journal of Control , vol.78 , Issue.15 , pp. 1155-1165
    • Pertew, A.M.1    Marquez, H.J.2    Zhao, Q.3
  • 176
    • 84884385923 scopus 로고    scopus 로고
    • Designing of state-space neural model and its application to robust fault detection
    • Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Springer, Heidelberg
    • Mrugalski, M.: Designing of state-space neural model and its application to robust fault detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 140-149. Springer, Heidelberg (2013)
    • ICAISC 2013, Part I. LNCS , vol.7894 , Issue.2013 , pp. 140-149
    • Mrugalski, M.1
  • 177
    • 21244437999 scopus 로고    scopus 로고
    • Unscented filtering and nonlinear estimation
    • IEEE
    • Julier, S., Uhlmann, J.: Unscented filtering and nonlinear estimation. Proceedings of the IEEE 92(3), 401-422 (2004)
    • (2004) Proceedings of the , vol.92 , Issue.3 , pp. 401-422
    • Julier, S.1    Uhlmann, J.2
  • 178
    • 44649122952 scopus 로고    scopus 로고
    • Applying the unscented kalman filter for nonlinear state estimation
    • Kandepu, R., Foss, B., Imsland, L.: Applying the unscented kalman filter for nonlinear state estimation. Journal of Process Control 18(7-8), 753-768 (2008)
    • (2008) Journal of Process Control , vol.18 , Issue.7-8 , pp. 753-768
    • Kandepu, R.1    Foss, B.2    Imsland, L.3
  • 179
    • 33746577251 scopus 로고    scopus 로고
    • Princeton University Press, Princeton
    • Bernstein, D.: Matrix Mathematics. Princeton University Press, Princeton (2005)
    • (2005) Matrix Mathematics
    • Bernstein, D.1
  • 180
    • 84865847629 scopus 로고    scopus 로고
    • Discrete state space control
    • Peddle, I.: Discrete state space control. Control Systems 414, 2-3 (2007)
    • (2007) Control Systems , vol.414 , pp. 2-3
    • Peddle, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.