메뉴 건너뛰기




Volumn 22, Issue 7, 2009, Pages 1011-1017

Generalized neuron: Feedforward and recurrent architectures

Author keywords

Classification; Density estimation; Generalized neuron; Nonlinear function approximation; Particle swarm optimization (PSO); Recurrent generalized neuron.

Indexed keywords

CLASSIFICATION; DENSITY ESTIMATION; GENERALIZED NEURON; NONLINEAR FUNCTION APPROXIMATION; RECURRENT GENERALIZED NEURON.;

EID: 69449087976     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2009.07.027     Document Type: Article
Times cited : (21)

References (29)
  • 2
    • 34249714893 scopus 로고    scopus 로고
    • Time series prediction with recurrent neural networks trained by a hybrid PSO-EA algorithm
    • Cai X., Zhang N., Venayagamoorthy G.K., and Wunsch II D.C. Time series prediction with recurrent neural networks trained by a hybrid PSO-EA algorithm. Neurocomputation 70 13-15 (2007) 2342-2353
    • (2007) Neurocomputation , vol.70 , Issue.13-15 , pp. 2342-2353
    • Cai, X.1    Zhang, N.2    Venayagamoorthy, G.K.3    Wunsch II, D.C.4
  • 4
    • 4043106958 scopus 로고    scopus 로고
    • Experimental studies with a generalized neuron based power system stabilizer
    • Chaturvedi D.K., Malik O.P., and Kalra P.K. Experimental studies with a generalized neuron based power system stabilizer. IEEE Transactions on Power Systems 19 (2004) 1445-1453
    • (2004) IEEE Transactions on Power Systems , vol.19 , pp. 1445-1453
    • Chaturvedi, D.K.1    Malik, O.P.2    Kalra, P.K.3
  • 7
    • 33644904964 scopus 로고    scopus 로고
    • An innovative computational approach based on a particle swarm strategy for adaptive phased-arrays control
    • Donelli M., Azaro R., De Natale F.G.B., and Massa A. An innovative computational approach based on a particle swarm strategy for adaptive phased-arrays control. IEEE Transactions on Antennas and Propagation 54 3 (2006) 888-898
    • (2006) IEEE Transactions on Antennas and Propagation , vol.54 , Issue.3 , pp. 888-898
    • Donelli, M.1    Azaro, R.2    De Natale, F.G.B.3    Massa, A.4
  • 9
    • 84942134374 scopus 로고    scopus 로고
    • Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks
    • Gudise, V. G., & Venayagamoorthy, G. K. (2003). Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks, In Proc. IEEE swarm intelligence symposium SIS (pp. 110-117)
    • (2003) Proc. IEEE swarm intelligence symposium SIS , pp. 110-117
    • Gudise, V.G.1    Venayagamoorthy, G.K.2
  • 10
    • 0032071951 scopus 로고    scopus 로고
    • Making sense of a complex world [chaotic events modeling]
    • Haykin S., and Principe J. Making sense of a complex world [chaotic events modeling]. IEEE Signal Processing Magazine 15 3 (1998) 66-81
    • (1998) IEEE Signal Processing Magazine , vol.15 , Issue.3 , pp. 66-81
    • Haykin, S.1    Principe, J.2
  • 11
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchombe, M.2    White, H.3
  • 12
    • 84899047533 scopus 로고    scopus 로고
    • Kennedy, J. (1999). Small worlds and mega-minds: Effects of neighborhood topology onparticle swarm performance. In Proc. 1999 congress on evolutionary computation, 1999. CEC 99., 3
    • Kennedy, J. (1999). Small worlds and mega-minds: Effects of neighborhood topology onparticle swarm performance. In Proc. 1999 congress on evolutionary computation, 1999. CEC 99., Vol. 3
  • 16
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • Mackey M.C., and Glass L. Oscillation and chaos in physiological control systems. Science 197 (1977) 287-289
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 18
    • 0031375732 scopus 로고    scopus 로고
    • Mukherjee, S., Osuna, E., & Girosi, F. (1997). Nonlinear prediction of chaotic time series using support vector machines. In Proc. IEEE workshop neural networks for signal processing [1997] VII (pp. 511-520)
    • Mukherjee, S., Osuna, E., & Girosi, F. (1997). Nonlinear prediction of chaotic time series using support vector machines. In Proc. IEEE workshop neural networks for signal processing [1997] VII (pp. 511-520)
  • 19
    • 33846903635 scopus 로고    scopus 로고
    • Niu, C. (2005). Medical image registration based on mutual information using kriging probability density estimation. In Proc. 27th annual international conference of the engineering in medicine and biology society IEEE-EMBS 2005 (pp. 3097-3099)
    • Niu, C. (2005). Medical image registration based on mutual information using kriging probability density estimation. In Proc. 27th annual international conference of the engineering in medicine and biology society IEEE-EMBS 2005 (pp. 3097-3099)
  • 20
    • 33749240206 scopus 로고    scopus 로고
    • Multi-class pattern classification using neural networks
    • Ou G., and Murphey Y.L. Multi-class pattern classification using neural networks. Pattern Recognition 40 1 (2007) 4-18
    • (2007) Pattern Recognition , vol.40 , Issue.1 , pp. 4-18
    • Ou, G.1    Murphey, Y.L.2
  • 24
    • 34047166022 scopus 로고    scopus 로고
    • Support vector echo-state machine for chaotic time-series prediction
    • Shi Z., and Han M. Support vector echo-state machine for chaotic time-series prediction. IEEE Transactions on Neural Networks 18 2 (2007) 359-372
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.2 , pp. 359-372
    • Shi, Z.1    Han, M.2
  • 25
    • 69449088919 scopus 로고    scopus 로고
    • A successful interdisciplinary course on computational intelligence
    • Venayagamoorthy G.K. A successful interdisciplinary course on computational intelligence. IEEE Computational Intelligence Magazine 4 1 (2009) 14-23
    • (2009) IEEE Computational Intelligence Magazine , vol.4 , Issue.1 , pp. 14-23
    • Venayagamoorthy, G.K.1
  • 27
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: Perceptrons, madaline, and backproapagation
    • Widrow B., and Lehr M.A. 30 years of adaptive neural networks: Perceptrons, madaline, and backproapagation. Proceedings of IEEE 78 (1990) 1415-1442
    • (1990) Proceedings of IEEE , vol.78 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.A.2
  • 28
    • 52349083573 scopus 로고    scopus 로고
    • Optimal power scheduling for correlated data fusion in wireless sensor networks via constrained PSO
    • Wimalajeewa T., and Jayaweera S.K. Optimal power scheduling for correlated data fusion in wireless sensor networks via constrained PSO. IEEE Transactions on Wireless Communications 7 9 (2008) 3608-3618
    • (2008) IEEE Transactions on Wireless Communications , vol.7 , Issue.9 , pp. 3608-3618
    • Wimalajeewa, T.1    Jayaweera, S.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.