메뉴 건너뛰기




Volumn , Issue , 2012, Pages 681-688

A genetic algorithm for designing neural network ensembles

Author keywords

ensemble methods; genetic algorithms; neural networks

Indexed keywords

ACTIVATION FUNCTIONS; DATA SETS; DEGREE OF DIVERSITY; ENSEMBLE METHODS; GENERALIZATION CAPABILITY; HIDDEN NEURONS; NEURAL NETWORK ENSEMBLES; OPTIMAL COMBINATION; TRAINING DATA SETS; UNIFIED PROCEDURES;

EID: 84864680335     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2330163.2330259     Document Type: Conference Paper
Times cited : (12)

References (27)
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • August
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, August 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 3
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: A survey and categorisation. Information Fusion, 6(1):5-20, 2005.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 4
    • 79951681587 scopus 로고    scopus 로고
    • Learning ensembles of neural networks by means of a bayesian artificial immune system
    • February
    • P. A. D. Castro and F. J. V. Zuben. Learning ensembles of neural networks by means of a bayesian artificial immune system. IEEE Transactions on Neural Networks, 22(2):304-316, February 2011.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.2 , pp. 304-316
    • Castro, P.A.D.1    Zuben, F.J.V.2
  • 5
    • 33845291177 scopus 로고    scopus 로고
    • Trade-off between diversity and accuracy in ensemble generation
    • Y. Jin, editor, Multi-Objective Machine Learning, Springer Berlin / Heidelberg
    • A. Chandra, H. Chen, and X. Yao. Trade-off between diversity and accuracy in ensemble generation. In Y. Jin, editor, Multi-Objective Machine Learning, volume 16 of Studies in Computational Intelligence, pages 429-464. Springer Berlin / Heidelberg, 2006.
    • (2006) Studies in Computational Intelligence , vol.16 , pp. 429-464
    • Chandra, A.1    Chen, H.2    Yao, X.3
  • 6
    • 78649938427 scopus 로고    scopus 로고
    • On the evolutionary design of heterogeneous bagging models
    • A. L. V. Coelho and D. S. C. Nascimento. On the evolutionary design of heterogeneous bagging models. Neurocomputing, 73(16-18):3319-3322, 2010.
    • (2010) Neurocomputing , vol.73 , Issue.16-18 , pp. 3319-3322
    • Coelho, A.L.V.1    Nascimento, D.S.C.2
  • 8
    • 30344473315 scopus 로고    scopus 로고
    • Genetic algorithm optimized neural networks ensemble for estimation of mefenamic acid and paracetamol in tablets
    • S. Dondeti, K. Kannan, and R. Manavalan. Genetic algorithm optimized neural networks ensemble for estimation of mefenamic acid and paracetamol in tablets. Acta Chimica Slovenica, 52:440-449, 2005.
    • (2005) Acta Chimica Slovenica , vol.52 , pp. 440-449
    • Dondeti, S.1    Kannan, K.2    Manavalan, R.3
  • 10
    • 67949083521 scopus 로고    scopus 로고
    • Comparison of soft-sensor design methods for industrial plants using small data sets
    • August
    • L. Fortuna, S. Graziani, and M. G. Xibilia. Comparison of soft-sensor design methods for industrial plants using small data sets. IEEE Transactions on Instrumentation and Measurement, 58(8):2444-2451, August 2009.
    • (2009) IEEE Transactions on Instrumentation and Measurement , vol.58 , Issue.8 , pp. 2444-2451
    • Fortuna, L.1    Graziani, S.2    Xibilia, M.G.3
  • 12
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • J. H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19(1):1-67, 1991.
    • (1991) The Annals of Statistics , vol.19 , Issue.1 , pp. 1-67
    • Friedman, J.H.1
  • 15
    • 33750682003 scopus 로고    scopus 로고
    • Bootstrapped artificial neural networks for synthetic flow generation with a small data sample
    • Y. Jia and T. B. Culver. Bootstrapped artificial neural networks for synthetic flow generation with a small data sample. Journal of Hydrology, 331(3-4):580-590, 2006.
    • (2006) Journal of Hydrology , vol.331 , Issue.3-4 , pp. 580-590
    • Jia, Y.1    Culver, T.B.2
  • 18
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Y. Liu and X. Yao. Ensemble learning via negative correlation. Neural Networks, 12:1399-1404, 1999.
    • (1999) Neural Networks , vol.12 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 19
    • 0034315099 scopus 로고    scopus 로고
    • Evolutionary ensembles with negative correlation learning
    • November
    • Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative correlation learning. IEEE Transactions on Evolutionary Computation, 4(4):380-387, November 2000.
    • (2000) IEEE Transactions on Evolutionary Computation , vol.4 , Issue.4 , pp. 380-387
    • Liu, Y.1    Yao, X.2    Higuchi, T.3
  • 20
    • 0025536870 scopus 로고
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
    • June
    • D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In IJCNN International Joint Conference on Neural Networks 1990, volume 3, pages 21-26, June 1990.
    • (1990) IJCNN International Joint Conference on Neural Networks 1990 , vol.3 , pp. 21-26
    • Nguyen, D.1    Widrow, B.2
  • 23
    • 84864677650 scopus 로고    scopus 로고
    • Laboratory of Artificial Intelligence and Decision Support (LIAAD), University of Porto
    • L. Torgo. Regression Datasets. Laboratory of Artificial Intelligence and Decision Support (LIAAD), University of Porto, 2011. http://www.liaad.up.pt/ ~ltorgo/Regression/DataSets.html.
    • (2011) Regression Datasets
    • Torgo, L.1
  • 26
    • 84864678900 scopus 로고    scopus 로고
    • Particle-swarm-optimization-based selective neural network ensemble and its application to modeling resonant frequency of microstrip antenna
    • InTech, April
    • T. Yu-Bo and X. Zhi-Bin. Particle-swarm-optimization-based selective neural network ensemble and its application to modeling resonant frequency of microstrip antenna. In Microstrip Antennas, pages 69-82. InTech, April 2011.
    • (2011) Microstrip Antennas , pp. 69-82
    • Yu-Bo, T.1    Zhi-Bin, X.2
  • 27
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z.-H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: Many could be better than all. Artificial Intelligence, 137(1-2):239-263, 2002.
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.