메뉴 건너뛰기




Volumn 22, Issue 2, 2011, Pages 304-316

Learning ensembles of neural networks by means of a Bayesian artificial immune system

Author keywords

Artificial immune system; Bayesian networks; classification problems; combinatorial optimization; ensemble of neural networks

Indexed keywords

ARTIFICIAL IMMUNE SYSTEM; AUTOMATIC CONTROL; BAYESIAN; BAYESIAN FRAMEWORKS; CANDIDATE SOLUTION; CLASSIFICATION PROBLEMS; COMPARATIVE ANALYSIS; ENSEMBLE OF NEURAL NETWORKS; ESTIMATION OF DISTRIBUTION ALGORITHMS; JOINT DISTRIBUTIONS; POPULATION SIZES; PROBABILISTIC MODELS; SEARCH ALGORITHMS;

EID: 79951681587     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2096823     Document Type: Article
Times cited : (32)

References (52)
  • 2
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Cambridge, MA: MIT Press
    • A. Krogh and J. Vedelsby, "Neural network ensembles, cross validation, and active learning," in Advances in Neural Information Processing System, vol. 7. Cambridge, MA: MIT Press, 1994, pp. 231-238.
    • (1994) Advances in Neural Information Processing System , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 3
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble method for neural networks
    • R. Mammone, Ed. London, U.K.: Chapman & Hall
    • M. Perrone and L. N. Cooper, "When networks disagree: Ensemble method for neural networks," in Neural Networks for Speech and Image Processing, R. Mammone, Ed. London, U.K.: Chapman & Hall, 1993, pp. 126-142.
    • (1993) Neural Networks for Speech and Image Processing , pp. 126-142
    • Perrone, M.1    Cooper, L.N.2
  • 4
    • 42149173854 scopus 로고    scopus 로고
    • Construction of classifier ensembles by means of artificial immune systems
    • DOI 10.1007/s10732-007-9036-0
    • N. García-Pedrajas and C. Fyfe, "Construction of classifier ensembles by means of artificial immune systems," J. Heuristics, vol. 14, no. 3, pp. 285-310, Jun. 2008. (Pubitemid 351534266)
    • (2008) Journal of Heuristics , vol.14 , Issue.3 , pp. 285-310
    • Garcia-Pedrajas, N.1    Fyfe, C.2
  • 5
    • 33847409306 scopus 로고    scopus 로고
    • Immune network based ensembles
    • DOI 10.1016/j.neucom.2006.11.005, PII S092523120600467X, Advances in Computational Intelligence and Learning 14th European Symposium on Artificial Neural Networks 2006
    • N. García-Pedrajas and C. Fyfe, "Immune network based ensembles," Neurocomputing, vol. 70, nos. 7-9, pp. 1155-1166, Mar. 2007. (Pubitemid 46336774)
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1155-1166
    • Garcia-Pedrajas, N.1    Fyfe, C.2
  • 6
    • 61449099344 scopus 로고    scopus 로고
    • Bio-inspired and gradient-based algorithms to train MLPs: The influence of diversity
    • Apr.
    • R. Pasti and L. N. De Castro, "Bio-inspired and gradient-based algorithms to train MLPs: The influence of diversity," Inf. Sci., vol. 179, no. 10, pp. 1441-1453, Apr. 2009.
    • (2009) Inf. Sci. , vol.179 , Issue.10 , pp. 1441-1453
    • Pasti, R.1    De Castro, L.N.2
  • 7
    • 77955925117 scopus 로고    scopus 로고
    • Neural network ensembles: Immune-inspired approaches to the diversity of components
    • Sep.
    • R. Pasti, L. N. De Castro, G. P. Coelho, and F. J. Von Zuben, "Neural network ensembles: Immune-inspired approaches to the diversity of components," Natural Comput., vol. 9, no. 3, pp. 625-653, Sep. 2010.
    • (2010) Natural Comput. , vol.9 , Issue.3 , pp. 625-653
    • Pasti, R.1    De Castro, L.N.2    Coelho, G.P.3    Von Zuben, F.J.4
  • 8
    • 38149046504 scopus 로고    scopus 로고
    • The influence of diversity in an immunebased algorithm to train MLP networks
    • R. Pasti and L. N. De Castro, "The influence of diversity in an immunebased algorithm to train MLP networks," in Proc. 6th Int. Conf. Artif. Immune Syst., 2007, pp. 71-82.
    • (2007) Proc. 6th Int. Conf. Artif. Immune Syst. , pp. 71-82
    • Pasti, R.1    De Castro, L.N.2
  • 10
    • 24644517147 scopus 로고    scopus 로고
    • Selective SVMs ensemble driven by immune clonal algorithm
    • Applications on Evolutionary Computing - EvoWorkshops 2005: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, and EvoSTOC, Proceedings
    • X. Zhang, S. Wang, T. Shan, and L. Jiao, "Selective SVMs ensemble driven by immune clonal algorithm," in Proc. EvoWorkshops, 2005, pp. 325-333. (Pubitemid 41273947)
    • (2005) Lecture Notes in Computer Science , vol.3449 , pp. 325-333
    • Zhang, X.1    Wang, S.2    Shan, T.3    Jiao, L.4
  • 12
    • 0036613006 scopus 로고    scopus 로고
    • Learning and optimization using the clonal selection principle
    • DOI 10.1109/TEVC.2002.1011539, PII S1089778X02060654
    • L. N. De Castro and F. J. Von Zuben, "Learning and optimization using the clonal selection principle," IEEE Trans. Evol. Comput., vol. 6, no. 3, pp. 239-251, Jun. 2002. (Pubitemid 34867248)
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.3 , pp. 239-251
    • De Castro, L.N.1    Von Zuben, F.J.2
  • 15
    • 61449207825 scopus 로고    scopus 로고
    • BAIS: A Bayesian artificial immune system for the effective handling of building blocks
    • Apr.
    • P. A. D. De Castro and F. J. Von Zuben, "BAIS: A Bayesian artificial immune system for the effective handling of building blocks," Inf. Sci., vol. 179, no. 10, pp. 1426-1440, Apr. 2009.
    • (2009) Inf. Sci. , vol.179 , Issue.10 , pp. 1426-1440
    • De Castro, P.A.D.1    Von Zuben, F.J.2
  • 16
    • 55349083364 scopus 로고    scopus 로고
    • Feature subset selection by means of a Bayesian artificial immune system
    • Barcelona, Spain, Sep.
    • P. A. D. De Castro and F. J. Von Zuben, "Feature subset selection by means of a Bayesian artificial immune system," in Proc. 8th Int. Conf. Hybrid Intell. Syst., Barcelona, Spain, Sep. 2008, pp. 561-566.
    • (2008) Proc. 8th Int. Conf. Hybrid Intell. Syst. , pp. 561-566
    • De Castro, P.A.D.1    Von Zuben, F.J.2
  • 17
    • 51049110988 scopus 로고    scopus 로고
    • MOBAIS: A Bayesian artificial immune system for multi-objective optimization
    • Phuket, Thailand, Aug.
    • P. A. D. Castro and F. J. Von Zuben, "MOBAIS: A Bayesian artificial immune system for multi-objective optimization," in Proc. 7th Int. Conf. Artif. Immune Syst., Phuket, Thailand, Aug. 2008, pp. 48-59.
    • (2008) Proc. 7th Int. Conf. Artif. Immune Syst. , pp. 48-59
    • Castro, P.A.D.1    Von Zuben, F.J.2
  • 18
    • 67349166512 scopus 로고    scopus 로고
    • Multi-objective Bayesian artificial immune system: Empirical evaluation and comparative analyses
    • P. A. D. De Castro and F. J. Von Zuben, "Multi-objective Bayesian artificial immune system: Empirical evaluation and comparative analyses," J. Math. Model. Algorithms, vol. 8, no. 2, pp. 151-173, 2009.
    • (2009) J. Math. Model. Algorithms , vol.8 , Issue.2 , pp. 151-173
    • De Castro, P.A.D.1    Von Zuben, F.J.2
  • 19
    • 78549296471 scopus 로고    scopus 로고
    • Multi-objective feature selection using a Bayesian artificial immune system
    • P. A. D. De Castro and F. J. Von Zuben, "Multi-objective feature selection using a Bayesian artificial immune system," Int. J. Intell. Comput. Cybern., vol. 3, no. 2, pp. 235-256, 2010.
    • (2010) Int. J. Intell. Comput. Cybern. , vol.3 , Issue.2 , pp. 235-256
    • De Castro, P.A.D.1    Von Zuben, F.J.2
  • 20
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • Mar.
    • G. Brown, J. Wyatt, R. Harris, and X. Yao, "Diversity creation methods: A survey and categorisation," Inf. Fusion, vol. 6, no. 1, pp. 5-20, Mar. 2005.
    • (2005) Inf. Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 21
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, Aug. 1996. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 22
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Jun.
    • R. E. Schapire, "The strength of weak learnability," Mach. Learn., vol. 5, no. 2, pp. 197-227, Jun. 1990.
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 23
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T. K. Ho, "The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug. 1998. (Pubitemid 128741345)
    • (1998) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 24
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Dec.
    • Y. Liu and X. Yao, "Ensemble learning via negative correlation," Neural Netw., vol. 12, no. 10, pp. 1399-1404, Dec. 1999.
    • (1999) Neural Netw. , vol.12 , Issue.10 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 25
    • 0033280266 scopus 로고    scopus 로고
    • Simultaneous training of negatively correlated neural networks in an ensemble
    • DOI 10.1109/3477.809027
    • Y. Liu and X. Yao, "Simultaneous training of negatively correlated neural networks in an ensemble," IEEE Trans. Syst., Man, Cybern., Part B: Cybern., vol. 29, no. 6, pp. 716-725, Dec. 1999. (Pubitemid 32211610)
    • (1999) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.29 , Issue.6 , pp. 716-725
    • Liu, Y.1    Yao, X.2
  • 26
    • 0034315099 scopus 로고    scopus 로고
    • Evolutionary ensembles with negative correlation learning
    • DOI 10.1109/4235.887237
    • Y. Liu, X. Yao, and T. Higuchi, "Evolutionary ensembles with negative correlation learning," IEEE Trans. Evol. Comput., vol. 4, no. 4, pp. 380-387, Nov. 2000. (Pubitemid 32075189)
    • (2000) IEEE Transactions on Evolutionary Computation , vol.4 , Issue.4 , pp. 380-387
    • Liu, Y.1    Yao, X.2    Higuchi, T.3
  • 27
    • 0042525838 scopus 로고    scopus 로고
    • A constructive algorithm for training cooperative neural network ensembles
    • Jul.
    • M. M. Islam, X. Yao, and K. Murase, "A constructive algorithm for training cooperative neural network ensembles," IEEE Trans. Neural Netw., vol. 14, no. 4, pp. 820-834, Jul. 2003.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.4 , pp. 820-834
    • Islam, M.M.1    Yao, X.2    Murase, K.3
  • 28
    • 72149122081 scopus 로고    scopus 로고
    • Regularized negative correlation learning for neural network ensembles
    • Dec.
    • H. Chen and X. Yao, "Regularized negative correlation learning for neural network ensembles," IEEE Trans. Neural Netw., vol. 20, no. 12, pp. 1962-1979, Dec. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.12 , pp. 1962-1979
    • Chen, H.1    Yao, X.2
  • 29
    • 78149249078 scopus 로고    scopus 로고
    • Multiobjective neural network ensembles based on regularized negative correlation learning
    • Feb.
    • H. Chen and X. Yao, "Multiobjective neural network ensembles based on regularized negative correlation learning," IEEE Trans. Knowl. Data Eng., vol. 22, no. 12, pp. 1738-1751, Feb. 2010.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.12 , pp. 1738-1751
    • Chen, H.1    Yao, X.2
  • 30
    • 33846309260 scopus 로고    scopus 로고
    • Advances in artificial immune systems
    • Nov.
    • D. Dasgupta, "Advances in artificial immune systems," IEEE Comput. Intell. Mag., vol. 1, no. 4, pp. 40-49, Nov. 2006.
    • (2006) IEEE Comput. Intell. Mag. , vol.1 , Issue.4 , pp. 40-49
    • Dasgupta, D.1
  • 31
    • 26844569805 scopus 로고    scopus 로고
    • An artificial immune system approach with secondary response for misbehavior detection in mobile ad hoc networks
    • DOI 10.1109/TNN.2005.853419
    • S. Sarafijanovic and J.-Y. Le Boudec, "An artificial immune system approach with secondary response for misbehavior detection in mobile ad hoc networks," IEEE Trans. Neural Netw., vol. 16, no. 5, pp. 1076-1087, Sep. 2005. (Pubitemid 41444613)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.5 , pp. 1076-1087
    • Sarafijanovic, S.1    Le Boudec, J.-Y.2
  • 32
    • 84901433127 scopus 로고    scopus 로고
    • An artificial immune network for multimodal function optimization
    • Honolulu, HI
    • L. N. De Castro and J. Timmis, "An artificial immune network for multimodal function optimization," in Proc. World Congr. Comput. Intell., vol. 1. Honolulu, HI, 2002, pp. 699-704.
    • (2002) Proc. World Congr. Comput. Intell. , vol.1 , pp. 699-704
    • De Castro, L.N.1    Timmis, J.2
  • 35
    • 26944481912 scopus 로고    scopus 로고
    • Designing ensembles of fuzzy classification systems: An immune-inspired approach
    • Artificial Immune Systems: 4th International Conference, ICARIS 2005. Proceedings
    • P. A. D. Castro, G. P. Coelho, M. F. Caetano, and F. J. Von Zuben, "Designing ensembles of fuzzy classification systems: An immuneinspired approach," in Proc. 4th Int. Conf. Artif. Immune Syst., Banff, AB, Canada, Aug. 2005, pp. 469-482. (Pubitemid 41472744)
    • (2005) Lecture Notes in Computer Science , vol.3627 , pp. 469-482
    • Castro, P.D.1    Coelho, G.P.2    Caetano, M.F.3    Von Zuben, F.J.4
  • 36
    • 72149131475 scopus 로고    scopus 로고
    • Exploratory data analysis with artificial immune systems
    • Y. Wu and C. Fyfe, "Exploratory data analysis with artificial immune systems," Evol. Intell., vol. 1, no. 2, pp. 159-169, 2008.
    • (2008) Evol. Intell. , vol.1 , Issue.2 , pp. 159-169
    • Wu, Y.1    Fyfe, C.2
  • 39
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Oct.
    • G. F. Cooper and E. Herskovits, "A Bayesian method for the induction of probabilistic networks from data," Mach. Learn., vol. 9, no. 4, pp. 309-347, Oct. 1992.
    • (1992) Mach. Learn. , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 40
    • 85012775611 scopus 로고
    • Propagating uncertainty in Bayesian networks by probabilistic logic sampling
    • M. Henrion, "Propagating uncertainty in Bayesian networks by probabilistic logic sampling," in Proc. 2nd Annu. Conf. Uncert. Artif. Intell., vol. 2. 1988, pp. 149-163.
    • (1988) Proc. 2nd Annu. Conf. Uncert. Artif. Intell. , vol.2 , pp. 149-163
    • Henrion, M.1
  • 41
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • DOI 10.1109/5.784219
    • X. Yao, "Evolving artificial neural networks," Proc. IEEE, vol. 87, no. 9, pp. 1423-1447, Sep. 1999. (Pubitemid 30503424)
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 42
    • 0036142879 scopus 로고    scopus 로고
    • Hybrid neural networks: An evolutionary approach with local search
    • E. M. Iyoda and F. J. Von Zuben, "Hybrid neural networks: An evolutionary approach with local search," Integr. Comput.-Aided Eng., vol. 9, no. 1, pp. 57-72, Jan. 2002. (Pubitemid 34080649)
    • (2002) Integrated Computer-Aided Engineering , vol.9 , Issue.1 , pp. 57-72
    • Iyoda, E.M.1    Von Zuben, F.J.2
  • 43
    • 0029710033 scopus 로고    scopus 로고
    • Evolutionary design of artificial neural networks with different nodes
    • Nagoya, Japan, May
    • Y. Liu and X. Yao, "Evolutionary design of artificial neural networks with different nodes," in Proc. IEEE Int. Conf. Evol. Comput., Nagoya, Japan, May 1996, pp. 670-675.
    • (1996) Proc. IEEE Int. Conf. Evol. Comput. , pp. 670-675
    • Liu, Y.1    Yao, X.2
  • 44
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • M. F. Møller, "A scaled conjugate gradient algorithm for fast supervised learning," Neural Netw., vol. 6, no. 4, pp. 525-533, 1993.
    • (1993) Neural Netw. , vol.6 , Issue.4 , pp. 525-533
    • Møller, M.F.1
  • 45
    • 0028202641 scopus 로고
    • An evolutionary algorithm that constructs recurrent neural networks
    • Jan.
    • P. J. Angeline, G. M. Saunders, and J. P. Pollack, "An evolutionary algorithm that constructs recurrent neural networks," IEEE Trans. Neural Netw., vol. 5, no. 1, pp. 54-65, Jan. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.1 , pp. 54-65
    • Angeline, P.J.1    Saunders, G.M.2    Pollack, J.P.3
  • 46
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • May
    • L. I. Kuncheva and C. J. Whitaker, "Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy," Mach. Learn., vol. 51, no. 2, pp. 181-207, May 2003.
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 47
    • 0345143226 scopus 로고    scopus 로고
    • The sources of increased accuracy for two proposed boosting algorithms
    • D. B. Skalak, "The sources of increased accuracy for two proposed boosting algorithms," in Proc. AAAI Integr. Multiple Learn. Models Workshop, 1996, pp. 1-6.
    • (1996) Proc. AAAI Integr. Multiple Learn. Models Workshop , pp. 1-6
    • Skalak, D.B.1
  • 49
    • 21044454599 scopus 로고    scopus 로고
    • Cooperative coevolution of artificial neural network ensembles for pattern classification
    • DOI 10.1109/TEVC.2005.844158
    • N. García-Pedrajas, C. Hervás-Martínez, and D. Ortiz-Boyer, "Cooperative coevolution of artificial neural network ensembles for pattern classification," IEEE Trans. Evol. Comput., vol. 9, no. 3, pp. 271-302, Jun. 2005. (Pubitemid 40871133)
    • (2005) IEEE Transactions on Evolutionary Computation , vol.9 , Issue.3 , pp. 271-302
    • Garcia-Pedrajas, N.1    Hervas-Martinez, C.2    Ortiz-Boyer, D.3
  • 50
    • 0003389370 scopus 로고
    • The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best
    • D. Whitley, "The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best," in Proc. 3rd Int. Conf. Genetic Algorithms, 1989, pp. 116-121.
    • (1989) Proc. 3rd Int. Conf. Genetic Algorithms , pp. 116-121
    • Whitley, D.1
  • 52
    • 77955878633 scopus 로고    scopus 로고
    • Computational methods for learning Bayesian networks from high-throughput biological data
    • Cambridge, U.K.: Cambridge Univ. Press
    • B. M. Broom and D. Subramanian, "Computational methods for learning Bayesian networks from high-throughput biological data," in Bayesian Inference for Gene Expression and Proteomics. Cambridge, U.K.: Cambridge Univ. Press, 2006.
    • (2006) Bayesian Inference for Gene Expression and Proteomics
    • Broom, B.M.1    Subramanian, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.