메뉴 건너뛰기




Volumn 92, Issue , 2012, Pages 124-132

Software measurement data reduction using ensemble techniques

Author keywords

Defect prediction; Ensembles of feature ranking techniques; Feature selection

Indexed keywords

CLASSIFICATION MODELS; DEFECT PREDICTION; DIFFERENT SIZES; EMPIRICAL STUDIES; ENSEMBLE TECHNIQUES; FAULT PREDICTION; FEATURE RANKING; FEATURE SELECTION METHODS; FEATURE SUBSET SELECTION; FILTER TECHNIQUES; LOCAL OPTIMA; MULTIPLE FEATURES; PROGRAM MODULE; SIGNAL TO NOISE; SOFTWARE DEFECT PREDICTION; SOFTWARE DEVELOPMENT PROCESS; SOFTWARE MEASUREMENT DATA; SOFTWARE METRICS;

EID: 84861479227     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.08.040     Document Type: Article
Times cited : (42)

References (33)
  • 1
    • 70449387097 scopus 로고    scopus 로고
    • An empirical investigation of filter attribute selection techniques for software quality classification
    • in: Proceedings of the 10th IEEE International Conference on Information Reuse and Integration, Las Vegas, Nevada
    • K. Gao, T.M. Khoshgoftaar, H. Wang, An empirical investigation of filter attribute selection techniques for software quality classification, in: Proceedings of the 10th IEEE International Conference on Information Reuse and Integration, Las Vegas, Nevada, pp. 272-277.
    • Gao, K.1    Khoshgoftaar, T.M.2    Wang, H.3
  • 2
    • 47949118212 scopus 로고    scopus 로고
    • Detecting fault modules applying feature selection to classifiers
    • in: Proceedings of 8th IEEE International Conference on Information Reuse and Integration, Las Vegas, Nevada
    • D. Rodriguez, R. Ruiz, J. Cuadrado-Gallego, J. Aguilar-Ruiz, Detecting fault modules applying feature selection to classifiers, in: Proceedings of 8th IEEE International Conference on Information Reuse and Integration, Las Vegas, Nevada, pp. 667-672.
    • Rodriguez, D.1    Ruiz, R.2    Cuadrado-Gallego, J.3    Aguilar-Ruiz, J.4
  • 3
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3:1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 4
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • Hall M.A., Holmes G. Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Knowl. Data Eng. 2003, 15:1437-1447.
    • (2003) IEEE Trans. Knowl. Data Eng. , vol.15 , pp. 1437-1447
    • Hall, M.A.1    Holmes, G.2
  • 5
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman G. An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 2003, 3:1289-1305.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 6
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H., Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005, 17:491-502.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 7
    • 28244470710 scopus 로고    scopus 로고
    • Finding the right data for software cost modeling
    • Chen Z., Menzies T., Port D., Boehm B. Finding the right data for software cost modeling. IEEE Software 2005, 38-46.
    • (2005) IEEE Software , pp. 38-46
    • Chen, Z.1    Menzies, T.2    Port, D.3    Boehm, B.4
  • 9
    • 84861484129 scopus 로고    scopus 로고
    • Combining multiple feature selection methods
    • in: Mid-Atlantic Student Workshop on Programming Languages and Systems (MASPLAS'02)
    • K. Lee, Combining multiple feature selection methods, in: Mid-Atlantic Student Workshop on Programming Languages and Systems (MASPLAS'02), pp. 12.1-12.9.
    • Lee, K.1
  • 10
    • 33748883822 scopus 로고    scopus 로고
    • Feature selection by combining multiple methods
    • in: Advances in Web Intelligence and Data Mining
    • L. Rokach, B. Chizi, O. Maimon, Feature selection by combining multiple methods, in: Advances in Web Intelligence and Data Mining, 2006, pp. 295-304.
    • (2006) , pp. 295-304
    • Rokach, L.1    Chizi, B.2    Maimon, O.3
  • 11
    • 33646433017 scopus 로고    scopus 로고
    • Stochfs: a framework for combining feature selection outcomes through a stochastic process
    • in: Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases
    • J.T. de Souza, N. Japkowicz, S. Matwin, Stochfs: a framework for combining feature selection outcomes through a stochastic process, in: Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 667-674.
    • de Souza, J.T.1    Japkowicz, N.2    Matwin, S.3
  • 12
    • 70350686854 scopus 로고    scopus 로고
    • Consensus group stable feature selection, in: KDD '09: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA
    • S. Loscalzo, L. Yu, C. Ding, Consensus group stable feature selection, in: KDD '09: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 567-576.
    • Loscalzo, S.1    Yu, L.2    Ding, C.3
  • 13
    • 34547636311 scopus 로고    scopus 로고
    • Combining feature selectors for text classification
    • in: CIKM '06: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, New York, NY, USA
    • J.O.S. Olsson, D.W. Oard, Combining feature selectors for text classification, in: CIKM '06: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, New York, NY, USA, pp. 798-799.
    • Olsson, J.O.S.1    Oard, D.W.2
  • 14
    • 79952374025 scopus 로고    scopus 로고
    • Ensemble feature selection technique for software quality classification
    • in: Proceedings of the 22nd International Conference on Software Engineering and Knowledge Engineering, Redwood City, CA, USA
    • H. Wang, T.M. Khoshgoftaar, K. Gao, Ensemble feature selection technique for software quality classification, in: Proceedings of the 22nd International Conference on Software Engineering and Knowledge Engineering, Redwood City, CA, USA, pp. 215-220.
    • Wang, H.1    Khoshgoftaar, T.M.2    Gao, K.3
  • 16
    • 0003075638 scopus 로고    scopus 로고
    • A practical approach to feature selection
    • in: Proceedings of 9th International Workshop on Machine Learning
    • K. Kira, L.A. Rendell, A practical approach to feature selection, in: Proceedings of 9th International Workshop on Machine Learning, pp. 249-256.
    • Kira, K.1    Rendell, L.A.2
  • 17
    • 58049123911 scopus 로고    scopus 로고
    • A novel GA-Taguchi-based feature selection method
    • in: IDEAL '08: Proceedings of the 9th International Conference on Intelligent Data Engineering and Automated Learning, Berlin, Heidelberg
    • C.-H. Yang, C.-C. Huang, K.-C. Wu, H.-Y. Chang, A novel GA-Taguchi-based feature selection method, in: IDEAL '08: Proceedings of the 9th International Conference on Intelligent Data Engineering and Automated Learning, Berlin, Heidelberg, pp. 112-119.
    • Yang, C.-H.1    Huang, C.-C.2    Wu, K.-C.3    Chang, H.-Y.4
  • 19
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., Long F., Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27:1226-1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 20
    • 0042767590 scopus 로고    scopus 로고
    • Fault-prediction modeling for software quality estimation: comparing commonly used techniques
    • Khoshgoftaar T.M., Seliya N. Fault-prediction modeling for software quality estimation: comparing commonly used techniques. Empirical Software Eng. J. 2003, 8:255-283.
    • (2003) Empirical Software Eng. J. , vol.8 , pp. 255-283
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 21
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognition Lett. 2006, 27:861-874.
    • (2006) Pattern Recognition Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 22
    • 0000468432 scopus 로고    scopus 로고
    • Estimating continuous distributions in Bayesian classifiers
    • in: Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo
    • G.H. John, P. Langley, Estimating continuous distributions in Bayesian classifiers, in: Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, vol. 2, pp. 338-345.
    • , vol.2 , pp. 338-345
    • John, G.H.1    Langley, P.2
  • 24
  • 25
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • Le Cessie S., Van Houwelingen J.C. Ridge estimators in logistic regression. Appl. Stat. 1992, 41:191-201.
    • (1992) Appl. Stat. , vol.41 , pp. 191-201
    • Le Cessie, S.1    Van Houwelingen, J.C.2
  • 26
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P., Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 1997, 29:103-130.
    • (1997) Mach. Learn. , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 27
    • 36949012531 scopus 로고    scopus 로고
    • Predicting defects for eclipse, in: ICSEW '07: Proceedings of the 29th International Conference on Software Engineering Workshops, IEEE Computer Society, Washington, DC, USA
    • T. Zimmermann, R. Premraj, A. Zeller, Predicting defects for eclipse, in: ICSEW '07: Proceedings of the 29th International Conference on Software Engineering Workshops, IEEE Computer Society, Washington, DC, USA, 2007, p. 76.
    • (2007) , pp. 76
    • Zimmermann, T.1    Premraj, R.2    Zeller, A.3
  • 28
    • 67349212116 scopus 로고    scopus 로고
    • An investigation into the functional form of the size-defect relationship for software modules
    • Koru A.G., Zhang D., Emam K.E., Liu H. An investigation into the functional form of the size-defect relationship for software modules. IEEE Trans. Software Eng. 2009, 35:293-304.
    • (2009) IEEE Trans. Software Eng. , vol.35 , pp. 293-304
    • Koru, A.G.1    Zhang, D.2    Emam, K.E.3    Liu, H.4
  • 29
    • 84861480177 scopus 로고    scopus 로고
    • Classification with Feature Selection from Noisy Data: A Comparative Study of Filters, Technical Report, Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, May
    • W. Altidor, T. Khoshgoftaar, J. Van Hulse, Classification with Feature Selection from Noisy Data: A Comparative Study of Filters, Technical Report, Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, May 2010.
    • (2010)
    • Altidor, W.1    Khoshgoftaar, T.2    Van Hulse, J.3
  • 30
    • 77951482577 scopus 로고    scopus 로고
    • Variance analysis in software fault prediction models
    • in: Proceedings of the 20th IEEE International Conference on Software Reliability Engineering, Bengaluru-Mysuru, India
    • Y. Jiang, J. Lin, B. Cukic, T. Menzies, Variance analysis in software fault prediction models, in: Proceedings of the 20th IEEE International Conference on Software Reliability Engineering, Bengaluru-Mysuru, India, pp. 99-108.
    • Jiang, Y.1    Lin, J.2    Cukic, B.3    Menzies, T.4
  • 31
    • 48649089002 scopus 로고    scopus 로고
    • An empirical study of learning from imbalanced data using random forest
    • in: Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence, Washington, DC, USA
    • T.M. Khoshgoftaar, M. Golawala, J. Van Hulse, An empirical study of learning from imbalanced data using random forest, in: Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence, Washington, DC, USA, vol. 2, pp. 310-317.
    • , vol.2 , pp. 310-317
    • Khoshgoftaar, T.M.1    Golawala, M.2    Van Hulse, J.3
  • 33
    • 79952838952 scopus 로고    scopus 로고
    • Choosing software metrics for defect prediction: an investigation on feature selection techniques
    • Gao K., Khoshgoftaar T.M., Wang H., Seliya N. Choosing software metrics for defect prediction: an investigation on feature selection techniques. Software: Pract. Exper. 2011, 41:579-606.
    • (2011) Software: Pract. Exper. , vol.41 , pp. 579-606
    • Gao, K.1    Khoshgoftaar, T.M.2    Wang, H.3    Seliya, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.