-
1
-
-
84969745139
-
Nearly two decades of neural network hydrologic modeling
-
B. Sivakumar and R. Berndtsson (Eds.), Hackensack: World Scientific Publishing
-
Abrahart RJ, See LM, Dawson CW, Shamseldin AY, Wilby RL (2010) Nearly two decades of neural network hydrologic modeling. In: Sivakumar B, Berndtsson R (eds) Advances in data-based approaches for hydrologic modeling and forecasting. World Scientific Publishing, Hackensack, pp 267-346.
-
(2010)
Advances in Data-Based Approaches for Hydrologic Modeling and Forecasting
, pp. 267-346
-
-
Abrahart, R.J.1
See, L.M.2
Dawson, C.W.3
Shamseldin, A.Y.4
Wilby, R.L.5
-
2
-
-
70349419638
-
Artificial neural network models for forecasting monthly precipitation in Jordan
-
Aksoy H, Dahamsheh A (2009) Artificial neural network models for forecasting monthly precipitation in Jordan. Stoch Environ Res Risk Assess 23(7): 917-931.
-
(2009)
Stoch Environ Res Risk Assess
, vol.23
, Issue.7
, pp. 917-931
-
-
Aksoy, H.1
Dahamsheh, A.2
-
3
-
-
78650584376
-
Fuzzy neural networks for water level and discharge forecasting with uncertainty
-
Alvisi S, Franchini M (2011) Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ Modell Softw 26(4): 523-537.
-
(2011)
Environ Modell Softw
, vol.26
, Issue.4
, pp. 523-537
-
-
Alvisi, S.1
Franchini, M.2
-
4
-
-
57649221780
-
Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks
-
Behzadian K, Kapelan Z (2009) Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks. Environ Modell Softw 24(4): 530-541.
-
(2009)
Environ Modell Softw
, vol.24
, Issue.4
, pp. 530-541
-
-
Behzadian, K.1
Kapelan, Z.2
-
6
-
-
77950360747
-
An experiment on the evolution of an ensemble of neural networks for streamflow forecasting
-
Boucher MA, Laliberté JP, Anctil F (2010) An experiment on the evolution of an ensemble of neural networks for streamflow forecasting. Hydrol Earth Syst Sci 14: 603-612.
-
(2010)
Hydrol Earth Syst Sci
, vol.14
, pp. 603-612
-
-
Boucher, M.A.1
Laliberté, J.P.2
Anctil, F.3
-
7
-
-
10644295753
-
Input determination for neural network models in water resources applications. Part 1-background and methodology
-
Bowden GJ, Dandy GC, Maier HR (2004a) Input determination for neural network models in water resources applications. Part 1-background and methodology. J Hydrol 301(1-4): 75-92.
-
(2004)
J Hydrol
, vol.301
, Issue.1-4
, pp. 75-92
-
-
Bowden, G.J.1
Dandy, G.C.2
Maier, H.R.3
-
8
-
-
10644225424
-
Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river
-
Bowden GJ, Dandy GC, Maier HR (2004b) Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river. J Hydrol 301(1-4): 93-107.
-
(2004)
J Hydrol
, vol.301
, Issue.1-4
, pp. 93-107
-
-
Bowden, G.J.1
Dandy, G.C.2
Maier, H.R.3
-
9
-
-
0032722662
-
Forecasting river flow rate during low flow periods using neural networks
-
Campolo M, Soldati A, Andreussi P (1999) Forecasting river flow rate during low flow periods using neural networks. Water Resour Res 35(11): 3547-3552.
-
(1999)
Water Resour Res
, vol.35
, Issue.11
, pp. 3547-3552
-
-
Campolo, M.1
Soldati, A.2
Andreussi, P.3
-
10
-
-
0029756425
-
Confidence interval prediction for neural network models
-
Chryssolouris G, Lee M, Ramsey A (1996) Confidence interval prediction for neural network models. IEEE Trans Neural Netw 7(1): 229-232.
-
(1996)
IEEE Trans Neural Netw
, vol.7
, Issue.1
, pp. 229-232
-
-
Chryssolouris, G.1
Lee, M.2
Ramsey, A.3
-
11
-
-
0032005702
-
An artificial neural network approach to rainfall runoff modeling
-
Dawson CW, Wilby R (1998) An artificial neural network approach to rainfall runoff modeling. Hydrol Sci J 43(1): 47-66.
-
(1998)
Hydrol Sci J
, vol.43
, Issue.1
, pp. 47-66
-
-
Dawson, C.W.1
Wilby, R.2
-
12
-
-
0034136344
-
Inductive learning approaches to rainfall-runoff modelling
-
Dawson CW, Brown M, Wilby R (2000) Inductive learning approaches to rainfall-runoff modelling. Int J Neural Syst 10: 43-57.
-
(2000)
Int J Neural Syst
, vol.10
, pp. 43-57
-
-
Dawson, C.W.1
Brown, M.2
Wilby, R.3
-
13
-
-
0037360099
-
Back propagation of pseudo-errors: neural networks that are adaptive to heterogeneous noise
-
Ding A, He X (2003) Back propagation of pseudo-errors: neural networks that are adaptive to heterogeneous noise. IEEE Trans Neural Netw 14(2): 253-262.
-
(2003)
IEEE Trans Neural Netw
, vol.14
, Issue.2
, pp. 253-262
-
-
Ding, A.1
He, X.2
-
14
-
-
77958183722
-
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-part 1: concepts and methodology
-
Elshorbagy A, Corzo G, Srinivasulu S, Solomatine DP (2010a) Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-part 1: concepts and methodology. Hydrol Earth Syst Sci 14: 1931-1941.
-
(2010)
Hydrol Earth Syst Sci
, vol.14
, pp. 1931-1941
-
-
Elshorbagy, A.1
Corzo, G.2
Srinivasulu, S.3
Solomatine, D.P.4
-
15
-
-
77958199170
-
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-part 2: application
-
Elshorbagy A, Corzo G, Srinivasulu S, Solomatine DP (2010b) Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-part 2: application. Hydrol Earth Syst Sci 14: 1943-1961.
-
(2010)
Hydrol Earth Syst Sci
, vol.14
, pp. 1943-1961
-
-
Elshorbagy, A.1
Corzo, G.2
Srinivasulu, S.3
Solomatine, D.P.4
-
16
-
-
77954386440
-
Monthly total sediment forecasting using adaptive neuro fuzzy inference system
-
Firat M, Gungor M (2010) Monthly total sediment forecasting using adaptive neuro fuzzy inference system. Stoch Environ Res Risk Assess 24: 259-270.
-
(2010)
Stoch Environ Res Risk Assess
, vol.24
, pp. 259-270
-
-
Firat, M.1
Gungor, M.2
-
18
-
-
33846419128
-
Uncertainties in real-time flood forecasting with neural networks
-
doi:10.1002/hyp.6184
-
Han DT, Kwong LiS (2007) Uncertainties in real-time flood forecasting with neural networks. Hydrol Process 21(2): 223-228. doi: 10. 1002/hyp. 6184.
-
(2007)
Hydrol Process
, vol.21
, Issue.2
, pp. 223-228
-
-
Han, D.T.1
Kwong, L.S.2
-
20
-
-
0002300771
-
Some potential applications of artificial neural networks in financial management
-
Hsieh C (1993) Some potential applications of artificial neural networks in financial management. J Syst Manag 44(4): 12-15.
-
(1993)
J Syst Manag
, vol.44
, Issue.4
, pp. 12-15
-
-
Hsieh, C.1
-
21
-
-
33748029144
-
Bayesian neural network for rainfall-runoff modeling
-
doi:10.1029/2005WR003971
-
Khan MS, Coulibaly P (2006) Bayesian neural network for rainfall-runoff modeling. Water Resour Res 42: W07409. doi: 10. 1029/2005WR003971.
-
(2006)
Water Resour Res
, vol.42
-
-
Khan, M.S.1
Coulibaly, P.2
-
22
-
-
70449526290
-
A prediction interval-based approach to determine optimal structures of neural network meta models
-
Khosravi A, Nahavandi S, Creighton D (2010) A prediction interval-based approach to determine optimal structures of neural network meta models. Expert Syst Appl 37(3): 2377-2387.
-
(2010)
Expert Syst Appl
, vol.37
, Issue.3
, pp. 2377-2387
-
-
Khosravi, A.1
Nahavandi, S.2
Creighton, D.3
-
23
-
-
31444455186
-
Bayesian training of artificial neural network used for water resources modeling
-
doi:10.1029/2005WR004152
-
Kingston GB, Lambert MF, Maier HR (2005) Bayesian training of artificial neural network used for water resources modeling. Water Resour Res 41: W12409. doi: 10. 1029/2005WR004152.
-
(2005)
Water Resour Res
, vol.41
-
-
Kingston, G.B.1
Lambert, M.F.2
Maier, H.R.3
-
24
-
-
0034737033
-
A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
-
Luk KC, Ball JE, Sharma A (2000) A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J Hydrol 227: 56-65.
-
(2000)
J Hydrol
, vol.227
, pp. 56-65
-
-
Luk, K.C.1
Ball, J.E.2
Sharma, A.3
-
25
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
MacKay KJC (1992) A practical Bayesian framework for backpropagation networks. Neural Comput 4: 448-472.
-
(1992)
Neural Comput
, vol.4
, pp. 448-472
-
-
MacKay, K.J.C.1
-
26
-
-
77951175284
-
Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
-
Maier HR, Ashu J, Graeme CD, Sudheer KP (2010) Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ Modell Softw 25(8): 891-909.
-
(2010)
Environ Modell Softw
, vol.25
, Issue.8
, pp. 891-909
-
-
Maier, H.R.1
Ashu, J.2
Graeme, C.D.3
Sudheer, K.P.4
-
27
-
-
0014776873
-
River flow forecasting through conceptual models: 1. A discussion of principles
-
Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models: 1. A discussion of principles. J Hydrol 10: 282-290.
-
(1970)
J Hydrol
, vol.10
, pp. 282-290
-
-
Nash, J.E.1
Sutcliffe, J.V.2
-
30
-
-
0035505634
-
Confidence estimation methods for neural networks: a practical comparison
-
Papadopoulos G, Edwards P, Murray A (2001) Confidence estimation methods for neural networks: a practical comparison. IEEE Trans Neural Netw 12(6): 1278-1287.
-
(2001)
IEEE Trans Neural Netw
, vol.12
, Issue.6
, pp. 1278-1287
-
-
Papadopoulos, G.1
Edwards, P.2
Murray, A.3
-
31
-
-
0033535432
-
A non-linear rainfall-runoff model using an artificial neural network
-
Sajikumar N, Thandaveswara BS (1999) A non-linear rainfall-runoff model using an artificial neural network. J Hydrol 216: 32-35.
-
(1999)
J Hydrol
, vol.216
, pp. 32-35
-
-
Sajikumar, N.1
Thandaveswara, B.S.2
-
32
-
-
0038776040
-
EASY-FIT: a software system for data fitting in dynamic systems
-
Schittkowski K (2002) EASY-FIT: a software system for data fitting in dynamic systems. Struct Multidiscip Optim 23: 153-169.
-
(2002)
Struct Multidiscip Optim
, vol.23
, pp. 153-169
-
-
Schittkowski, K.1
-
33
-
-
68349123741
-
Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment
-
Sharma SK, Tiwari KN (2009) Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment. J Hydrol 374: 209-222.
-
(2009)
J Hydrol
, vol.374
, pp. 209-222
-
-
Sharma, S.K.1
Tiwari, K.N.2
-
34
-
-
70549095134
-
Physically based and data driven models and propagation of input uncertainties in river flood prediction
-
Shrestha R, Nestmann F (2009) Physically based and data driven models and propagation of input uncertainties in river flood prediction. J Hydrol Eng 1412: 1309-1319.
-
(2009)
J Hydrol Eng
, vol.1412
, pp. 1309-1319
-
-
Shrestha, R.1
Nestmann, F.2
-
35
-
-
33645987256
-
Machine learning approaches for estimation of prediction interval for the model output
-
Shrestha DL, Solomatine DP (2006) Machine learning approaches for estimation of prediction interval for the model output. Neural Netw 19(2): 225-235.
-
(2006)
Neural Netw
, vol.19
, Issue.2
, pp. 225-235
-
-
Shrestha, D.L.1
Solomatine, D.P.2
-
36
-
-
0034127203
-
Artificial neural networks and long-range precipitation in California
-
Silverman D, Dracup JA (2000) Artificial neural networks and long-range precipitation in California. J Appl Meteorol 31(1): 57-66.
-
(2000)
J Appl Meteorol
, vol.31
, Issue.1
, pp. 57-66
-
-
Silverman, D.1
Dracup, J.A.2
-
37
-
-
79953721649
-
Range estimation of construction costs using neural networks with bootstrap prediction intervals
-
Sonmez R (2011) Range estimation of construction costs using neural networks with bootstrap prediction intervals. Expert Syst Appl 38(8): 9913-9917.
-
(2011)
Expert Syst Appl
, vol.38
, Issue.8
, pp. 9913-9917
-
-
Sonmez, R.1
-
38
-
-
36749007877
-
A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models
-
doi:10.1029/2006WR005352
-
Srivastav RK, Sudheer KP, Chaubey I (2007) A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resour Res 43: W10407. doi: 10. 1029/2006WR005352.
-
(2007)
Water Resour Res
, vol.43
-
-
Srivastav, R.K.1
Sudheer, K.P.2
Chaubey, I.3
-
39
-
-
23044433719
-
Knowledge extraction from trained neural network river flow models
-
Sudheer KP (2005) Knowledge extraction from trained neural network river flow models. J Hydrol Eng 10(4): 264-269.
-
(2005)
J Hydrol Eng
, vol.10
, Issue.4
, pp. 264-269
-
-
Sudheer, K.P.1
-
40
-
-
0037197571
-
A data-driven algorithm for constructing artificial neural network rainfall-runoff models
-
Sudheer KP, Gosain AK, Ramasastri KS (2002) A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol Process 16(6): 1325-1330.
-
(2002)
Hydrol Process
, vol.16
, Issue.6
, pp. 1325-1330
-
-
Sudheer, K.P.1
Gosain, A.K.2
Ramasastri, K.S.3
-
41
-
-
0034174356
-
Hydrological forecasting using neural networks
-
Thirumalaiah K, Deo MC (2000) Hydrological forecasting using neural networks. J Hydrol Eng 5(2): 180-189.
-
(2000)
J Hydrol Eng
, vol.5
, Issue.2
, pp. 180-189
-
-
Thirumalaiah, K.1
Deo, M.C.2
-
42
-
-
75149131606
-
Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)
-
Tiwari MK, Chatterjee C (2010) Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J Hydrol 382(1-4): 20-33.
-
(2010)
J Hydrol
, vol.382
, Issue.1-4
, pp. 20-33
-
-
Tiwari, M.K.1
Chatterjee, C.2
-
43
-
-
62949213977
-
Estimating uncertainty of streamflow simulation using Bayesian neural networks
-
doi:10.1029/2008WR007030
-
Zhang X, Liang F, Srinivasan R, van Liew M (2009) Estimating uncertainty of streamflow simulation using Bayesian neural networks. Water Resour Res 45: W02403. doi: 10. 1029/2008WR007030.
-
(2009)
Water Resour Res
, vol.45
-
-
Zhang, X.1
Liang, F.2
Srinivasan, R.3
van Liew, M.4
|