메뉴 건너뛰기




Volumn 27, Issue 1, 2013, Pages 137-146

Quantification of the predictive uncertainty of artificial neural network based river flow forecast models

Author keywords

Artificial neural network (ANN); Bootstrap technique; Hydrological processes; Non linear function; Taylor series

Indexed keywords

STATISTICAL METHODS; TAYLOR SERIES; UNCERTAINTY ANALYSIS;

EID: 84871440798     PISSN: 14363240     EISSN: 14363259     Source Type: Journal    
DOI: 10.1007/s00477-012-0600-2     Document Type: Article
Times cited : (82)

References (43)
  • 2
    • 70349419638 scopus 로고    scopus 로고
    • Artificial neural network models for forecasting monthly precipitation in Jordan
    • Aksoy H, Dahamsheh A (2009) Artificial neural network models for forecasting monthly precipitation in Jordan. Stoch Environ Res Risk Assess 23(7): 917-931.
    • (2009) Stoch Environ Res Risk Assess , vol.23 , Issue.7 , pp. 917-931
    • Aksoy, H.1    Dahamsheh, A.2
  • 3
    • 78650584376 scopus 로고    scopus 로고
    • Fuzzy neural networks for water level and discharge forecasting with uncertainty
    • Alvisi S, Franchini M (2011) Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ Modell Softw 26(4): 523-537.
    • (2011) Environ Modell Softw , vol.26 , Issue.4 , pp. 523-537
    • Alvisi, S.1    Franchini, M.2
  • 4
    • 57649221780 scopus 로고    scopus 로고
    • Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks
    • Behzadian K, Kapelan Z (2009) Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks. Environ Modell Softw 24(4): 530-541.
    • (2009) Environ Modell Softw , vol.24 , Issue.4 , pp. 530-541
    • Behzadian, K.1    Kapelan, Z.2
  • 6
    • 77950360747 scopus 로고    scopus 로고
    • An experiment on the evolution of an ensemble of neural networks for streamflow forecasting
    • Boucher MA, Laliberté JP, Anctil F (2010) An experiment on the evolution of an ensemble of neural networks for streamflow forecasting. Hydrol Earth Syst Sci 14: 603-612.
    • (2010) Hydrol Earth Syst Sci , vol.14 , pp. 603-612
    • Boucher, M.A.1    Laliberté, J.P.2    Anctil, F.3
  • 7
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1-background and methodology
    • Bowden GJ, Dandy GC, Maier HR (2004a) Input determination for neural network models in water resources applications. Part 1-background and methodology. J Hydrol 301(1-4): 75-92.
    • (2004) J Hydrol , vol.301 , Issue.1-4 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 8
    • 10644225424 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river
    • Bowden GJ, Dandy GC, Maier HR (2004b) Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river. J Hydrol 301(1-4): 93-107.
    • (2004) J Hydrol , vol.301 , Issue.1-4 , pp. 93-107
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 9
    • 0032722662 scopus 로고    scopus 로고
    • Forecasting river flow rate during low flow periods using neural networks
    • Campolo M, Soldati A, Andreussi P (1999) Forecasting river flow rate during low flow periods using neural networks. Water Resour Res 35(11): 3547-3552.
    • (1999) Water Resour Res , vol.35 , Issue.11 , pp. 3547-3552
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 10
    • 0029756425 scopus 로고    scopus 로고
    • Confidence interval prediction for neural network models
    • Chryssolouris G, Lee M, Ramsey A (1996) Confidence interval prediction for neural network models. IEEE Trans Neural Netw 7(1): 229-232.
    • (1996) IEEE Trans Neural Netw , vol.7 , Issue.1 , pp. 229-232
    • Chryssolouris, G.1    Lee, M.2    Ramsey, A.3
  • 11
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall runoff modeling
    • Dawson CW, Wilby R (1998) An artificial neural network approach to rainfall runoff modeling. Hydrol Sci J 43(1): 47-66.
    • (1998) Hydrol Sci J , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 12
    • 0034136344 scopus 로고    scopus 로고
    • Inductive learning approaches to rainfall-runoff modelling
    • Dawson CW, Brown M, Wilby R (2000) Inductive learning approaches to rainfall-runoff modelling. Int J Neural Syst 10: 43-57.
    • (2000) Int J Neural Syst , vol.10 , pp. 43-57
    • Dawson, C.W.1    Brown, M.2    Wilby, R.3
  • 13
    • 0037360099 scopus 로고    scopus 로고
    • Back propagation of pseudo-errors: neural networks that are adaptive to heterogeneous noise
    • Ding A, He X (2003) Back propagation of pseudo-errors: neural networks that are adaptive to heterogeneous noise. IEEE Trans Neural Netw 14(2): 253-262.
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.2 , pp. 253-262
    • Ding, A.1    He, X.2
  • 14
    • 77958183722 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-part 1: concepts and methodology
    • Elshorbagy A, Corzo G, Srinivasulu S, Solomatine DP (2010a) Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-part 1: concepts and methodology. Hydrol Earth Syst Sci 14: 1931-1941.
    • (2010) Hydrol Earth Syst Sci , vol.14 , pp. 1931-1941
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 15
    • 77958199170 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-part 2: application
    • Elshorbagy A, Corzo G, Srinivasulu S, Solomatine DP (2010b) Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-part 2: application. Hydrol Earth Syst Sci 14: 1943-1961.
    • (2010) Hydrol Earth Syst Sci , vol.14 , pp. 1943-1961
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 16
    • 77954386440 scopus 로고    scopus 로고
    • Monthly total sediment forecasting using adaptive neuro fuzzy inference system
    • Firat M, Gungor M (2010) Monthly total sediment forecasting using adaptive neuro fuzzy inference system. Stoch Environ Res Risk Assess 24: 259-270.
    • (2010) Stoch Environ Res Risk Assess , vol.24 , pp. 259-270
    • Firat, M.1    Gungor, M.2
  • 18
    • 33846419128 scopus 로고    scopus 로고
    • Uncertainties in real-time flood forecasting with neural networks
    • doi:10.1002/hyp.6184
    • Han DT, Kwong LiS (2007) Uncertainties in real-time flood forecasting with neural networks. Hydrol Process 21(2): 223-228. doi: 10. 1002/hyp. 6184.
    • (2007) Hydrol Process , vol.21 , Issue.2 , pp. 223-228
    • Han, D.T.1    Kwong, L.S.2
  • 20
    • 0002300771 scopus 로고
    • Some potential applications of artificial neural networks in financial management
    • Hsieh C (1993) Some potential applications of artificial neural networks in financial management. J Syst Manag 44(4): 12-15.
    • (1993) J Syst Manag , vol.44 , Issue.4 , pp. 12-15
    • Hsieh, C.1
  • 21
    • 33748029144 scopus 로고    scopus 로고
    • Bayesian neural network for rainfall-runoff modeling
    • doi:10.1029/2005WR003971
    • Khan MS, Coulibaly P (2006) Bayesian neural network for rainfall-runoff modeling. Water Resour Res 42: W07409. doi: 10. 1029/2005WR003971.
    • (2006) Water Resour Res , vol.42
    • Khan, M.S.1    Coulibaly, P.2
  • 22
    • 70449526290 scopus 로고    scopus 로고
    • A prediction interval-based approach to determine optimal structures of neural network meta models
    • Khosravi A, Nahavandi S, Creighton D (2010) A prediction interval-based approach to determine optimal structures of neural network meta models. Expert Syst Appl 37(3): 2377-2387.
    • (2010) Expert Syst Appl , vol.37 , Issue.3 , pp. 2377-2387
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 23
    • 31444455186 scopus 로고    scopus 로고
    • Bayesian training of artificial neural network used for water resources modeling
    • doi:10.1029/2005WR004152
    • Kingston GB, Lambert MF, Maier HR (2005) Bayesian training of artificial neural network used for water resources modeling. Water Resour Res 41: W12409. doi: 10. 1029/2005WR004152.
    • (2005) Water Resour Res , vol.41
    • Kingston, G.B.1    Lambert, M.F.2    Maier, H.R.3
  • 24
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk KC, Ball JE, Sharma A (2000) A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J Hydrol 227: 56-65.
    • (2000) J Hydrol , vol.227 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 25
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay KJC (1992) A practical Bayesian framework for backpropagation networks. Neural Comput 4: 448-472.
    • (1992) Neural Comput , vol.4 , pp. 448-472
    • MacKay, K.J.C.1
  • 26
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
    • Maier HR, Ashu J, Graeme CD, Sudheer KP (2010) Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ Modell Softw 25(8): 891-909.
    • (2010) Environ Modell Softw , vol.25 , Issue.8 , pp. 891-909
    • Maier, H.R.1    Ashu, J.2    Graeme, C.D.3    Sudheer, K.P.4
  • 27
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models: 1. A discussion of principles
    • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models: 1. A discussion of principles. J Hydrol 10: 282-290.
    • (1970) J Hydrol , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 28
    • 19044383810 scopus 로고    scopus 로고
    • Short-term flood forecasting with a neurofuzzy model
    • doi:10.1029/2004WR003562
    • Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2005) Short-term flood forecasting with a neurofuzzy model. Water Resour Res 41: W04004. doi: 10. 1029/2004WR003562.
    • (2005) Water Resour Res , vol.41
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 30
    • 0035505634 scopus 로고    scopus 로고
    • Confidence estimation methods for neural networks: a practical comparison
    • Papadopoulos G, Edwards P, Murray A (2001) Confidence estimation methods for neural networks: a practical comparison. IEEE Trans Neural Netw 12(6): 1278-1287.
    • (2001) IEEE Trans Neural Netw , vol.12 , Issue.6 , pp. 1278-1287
    • Papadopoulos, G.1    Edwards, P.2    Murray, A.3
  • 31
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar N, Thandaveswara BS (1999) A non-linear rainfall-runoff model using an artificial neural network. J Hydrol 216: 32-35.
    • (1999) J Hydrol , vol.216 , pp. 32-35
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 32
    • 0038776040 scopus 로고    scopus 로고
    • EASY-FIT: a software system for data fitting in dynamic systems
    • Schittkowski K (2002) EASY-FIT: a software system for data fitting in dynamic systems. Struct Multidiscip Optim 23: 153-169.
    • (2002) Struct Multidiscip Optim , vol.23 , pp. 153-169
    • Schittkowski, K.1
  • 33
    • 68349123741 scopus 로고    scopus 로고
    • Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment
    • Sharma SK, Tiwari KN (2009) Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment. J Hydrol 374: 209-222.
    • (2009) J Hydrol , vol.374 , pp. 209-222
    • Sharma, S.K.1    Tiwari, K.N.2
  • 34
    • 70549095134 scopus 로고    scopus 로고
    • Physically based and data driven models and propagation of input uncertainties in river flood prediction
    • Shrestha R, Nestmann F (2009) Physically based and data driven models and propagation of input uncertainties in river flood prediction. J Hydrol Eng 1412: 1309-1319.
    • (2009) J Hydrol Eng , vol.1412 , pp. 1309-1319
    • Shrestha, R.1    Nestmann, F.2
  • 35
    • 33645987256 scopus 로고    scopus 로고
    • Machine learning approaches for estimation of prediction interval for the model output
    • Shrestha DL, Solomatine DP (2006) Machine learning approaches for estimation of prediction interval for the model output. Neural Netw 19(2): 225-235.
    • (2006) Neural Netw , vol.19 , Issue.2 , pp. 225-235
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 36
    • 0034127203 scopus 로고    scopus 로고
    • Artificial neural networks and long-range precipitation in California
    • Silverman D, Dracup JA (2000) Artificial neural networks and long-range precipitation in California. J Appl Meteorol 31(1): 57-66.
    • (2000) J Appl Meteorol , vol.31 , Issue.1 , pp. 57-66
    • Silverman, D.1    Dracup, J.A.2
  • 37
    • 79953721649 scopus 로고    scopus 로고
    • Range estimation of construction costs using neural networks with bootstrap prediction intervals
    • Sonmez R (2011) Range estimation of construction costs using neural networks with bootstrap prediction intervals. Expert Syst Appl 38(8): 9913-9917.
    • (2011) Expert Syst Appl , vol.38 , Issue.8 , pp. 9913-9917
    • Sonmez, R.1
  • 38
    • 36749007877 scopus 로고    scopus 로고
    • A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models
    • doi:10.1029/2006WR005352
    • Srivastav RK, Sudheer KP, Chaubey I (2007) A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resour Res 43: W10407. doi: 10. 1029/2006WR005352.
    • (2007) Water Resour Res , vol.43
    • Srivastav, R.K.1    Sudheer, K.P.2    Chaubey, I.3
  • 39
    • 23044433719 scopus 로고    scopus 로고
    • Knowledge extraction from trained neural network river flow models
    • Sudheer KP (2005) Knowledge extraction from trained neural network river flow models. J Hydrol Eng 10(4): 264-269.
    • (2005) J Hydrol Eng , vol.10 , Issue.4 , pp. 264-269
    • Sudheer, K.P.1
  • 40
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer KP, Gosain AK, Ramasastri KS (2002) A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol Process 16(6): 1325-1330.
    • (2002) Hydrol Process , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 41
    • 0034174356 scopus 로고    scopus 로고
    • Hydrological forecasting using neural networks
    • Thirumalaiah K, Deo MC (2000) Hydrological forecasting using neural networks. J Hydrol Eng 5(2): 180-189.
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 180-189
    • Thirumalaiah, K.1    Deo, M.C.2
  • 42
    • 75149131606 scopus 로고    scopus 로고
    • Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)
    • Tiwari MK, Chatterjee C (2010) Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J Hydrol 382(1-4): 20-33.
    • (2010) J Hydrol , vol.382 , Issue.1-4 , pp. 20-33
    • Tiwari, M.K.1    Chatterjee, C.2
  • 43
    • 62949213977 scopus 로고    scopus 로고
    • Estimating uncertainty of streamflow simulation using Bayesian neural networks
    • doi:10.1029/2008WR007030
    • Zhang X, Liang F, Srinivasan R, van Liew M (2009) Estimating uncertainty of streamflow simulation using Bayesian neural networks. Water Resour Res 45: W02403. doi: 10. 1029/2008WR007030.
    • (2009) Water Resour Res , vol.45
    • Zhang, X.1    Liang, F.2    Srinivasan, R.3    van Liew, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.