메뉴 건너뛰기




Volumn 6, Issue 2, 2008, Pages 109-122

Data‐driven approaches for estimating uncertainty in rainfall‐runoff modelling

Author keywords

Clustering; Data driven modelling; Rainfall runoff modelling; Uncertainty analysis

Indexed keywords

CLUSTER ANALYSIS; COMPUTER SIMULATION; DRAINAGE BASIN; ESTIMATION METHOD; NUMERICAL MODEL; RAINFALL-RUNOFF MODELING; UNCERTAINTY ANALYSIS;

EID: 65849306265     PISSN: 15715124     EISSN: 18142060     Source Type: Journal    
DOI: 10.1080/15715124.2008.9635341     Document Type: Article
Times cited : (58)

References (54)
  • 1
    • 33748327260 scopus 로고    scopus 로고
    • Information theory and artificial intelligence to manage uncertainty in hydrodynamic and hydrological models. PhD Thesis
    • Delft, The Netherlands
    • Abebe, A.J. (2004). Information theory and artificial intelligence to manage uncertainty in hydrodynamic and hydrological models. PhD Thesis, UNESCO-IHE Institute for Water Education, Delft, The Netherlands.
    • (2004) UNESCO-IHE Institute for Water Education
    • Abebe, A.J.1
  • 2
    • 0034254196 scopus 로고    scopus 로고
    • Comparing Neural Network and Autoregressive Moving Average Techniques for the Provision of Continuous River Flow Forecasts in Two Contrasting Catchments
    • Abrahart, R.J. andSee, L. (2000). “Comparing Neural Network and Autoregressive Moving Average Techniques for the Provision of Continuous River Flow Forecasts in Two Contrasting Catchments,”Hydrological Processes,14, 2157-2172.
    • (2000) Hydrological Processes , vol.14 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.2
  • 3
    • 0025725905 scopus 로고
    • Instance-Based Learning Algorithms
    • Aha, D., Kibler, D. and Albert, M. (1991). “Instance-Based Learning Algorithms,”Machine Learning,6, 37-66.
    • (1991) Machine Learning , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2    Albert, M.3
  • 4
    • 0003491818 scopus 로고    scopus 로고
    • Crop evapotranspiration: Guidelines for computing crop water requirements, FAO
    • Allen, R.G., Pereira, S.L., Raes, D. and Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements, FAO, Rome.
    • (1998) Rome
    • Allen, R.G.1    Pereira, S.L.2    Raes, D.3    Smith, M.4
  • 7
    • 0034441541 scopus 로고    scopus 로고
    • The Sensitivity of Catchment Runoff Models to Rainfall Data at Different Spatial Scales
    • Bell, V.A. and Moore, R.J. (2000). “The Sensitivity of Catchment Runoff Models to Rainfall Data at Different Spatial Scales,”Hydrology and Earth System Sciences,4(4), 653-667.
    • (2000) Hydrology and Earth System Sciences , vol.4 , Issue.4 , pp. 653-667
    • Bell, V.A.1    Moore, R.J.2
  • 8
    • 0004231183 scopus 로고
    • Development and Application of a Conceptual Runoff Model for Scandinavian Catchments
    • Bergstrom, S. (1976). “Development and Application of a Conceptual Runoff Model for Scandinavian Catchments,” SMHI Reports RHO, No. 7, Norrkoping.
    • (1976) SMHI Reports RHO, No. 7, Norrkoping
    • Bergstrom, S.1
  • 9
    • 0027009437 scopus 로고
    • The Future of Distributed Models: Model Calibration and Uncertainty Prediction
    • Beven, K. and Binley, A. (1992). “The Future of Distributed Models: Model Calibration and Uncertainty Prediction,”Hydrological Processes,6, 279-298.
    • (1992) Hydrological Processes , vol.6 , pp. 279-298
    • Beven, K.1    Binley, A.2
  • 10
    • 0035426008 scopus 로고    scopus 로고
    • Equifinality, Data Assimilation, and Uncertainty Estimation in Mechanistic Modelling of Complex Environmental Systems Using the GLUE Methodology
    • Beven, K. and Freer, J. (2001). “Equifinality, Data Assimilation, and Uncertainty Estimation in Mechanistic Modelling of Complex Environmental Systems Using the GLUE Methodology,”J. Hydrology,249, 11-29.
    • (2001) J. Hydrology , vol.249 , pp. 11-29
    • Beven, K.1    Freer, J.2
  • 11
    • 48149110539 scopus 로고
    • Pattern Recognition with Fuzzy Objective Function Algorithms
    • Norwell, MA, USA
    • Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell, MA, USA.
    • (1981) Kluwer Academic Publishers
    • Bezdek, J.C.1
  • 12
    • 10644295753 scopus 로고    scopus 로고
    • Input Determination for Neural Network Models in Water Resources Applications. Part 1 - background and methodology
    • Bowden, G.J., Dandy, G.C. and Maier, H.R. (2005). “Input Determination for Neural Network Models in Water Resources Applications. Part 1 - background and methodology,”J. Hydrology,301, 93-107.
    • (2005) J. Hydrology , vol.301 , pp. 93-107
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 14
    • 33746834358 scopus 로고    scopus 로고
    • Identification of Support Vector Machines for Runoff Modelling
    • Bray, M. and Han, D. (2004). “Identification of Support Vector Machines for Runoff Modelling,”J. Hydroinformatics,6, 265-280.
    • (2004) J. Hydroinformatics , vol.6 , pp. 265-280
    • Bray, M.1    Han, D.2
  • 15
    • 34250020342 scopus 로고    scopus 로고
    • Assessing uncertainty propagation through physically based models of soil water flow and solute transport
    • inAndersen, M. (ed.), John Wiley &Sons, Ltd.
    • Brown, J.D. and Heuvelink, G.B.M. (2005). Assessing uncertainty propagation through physically based models of soil water flow and solute transport, inAndersen, M. (ed.).Encyclopedia of Hydrological Sciences,John Wiley &Sons, Ltd, 1181-1195.
    • (2005) Encyclopedia of Hydrological Sciences , pp. 1181-1195
    • Brown, J.D.1    Heuvelink, G.B.M.2
  • 16
    • 0032005702 scopus 로고    scopus 로고
    • An Artificial Neural Network Approach to Rainfall-Runoff Modelling
    • Dawson, C.W. and Wilby, R. (1998). “An Artificial Neural Network Approach to Rainfall-Runoff Modelling,”Hydrological Science J.,43(1), 47-66.
    • (1998) Hydrological Science J , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 17
    • 0035398081 scopus 로고    scopus 로고
    • Model Induction with Support Vector Machines: Introduction and Applications
    • Dibike, Y.B., Velickov, S., Solomatine, D. and Abbott, M.B. (2001). “Model Induction with Support Vector Machines: Introduction and Applications,”J. Comput. Civil Eng.,15(3), 208-216.
    • (2001) J. Comput. Civil Eng , vol.15 , Issue.3 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbott, M.B.4
  • 18
    • 13244265879 scopus 로고    scopus 로고
    • Assessing Uncertainties in a Conceptual Water Balance Model Using Bayesian Methodology
    • Engeland, K., Xu, C.-Y. and Gottschalk, L. (2005). “Assessing Uncertainties in a Conceptual Water Balance Model Using Bayesian Methodology,”Hydrological Sciences J.,50(1), 45-63.
    • (2005) Hydrological Sciences J , vol.50 , Issue.1 , pp. 45-63
    • Engeland, K.1    Xu, C.-Y.2    Gottschalk, L.3
  • 20
    • 26444548489 scopus 로고    scopus 로고
    • Model Calibration and Uncertainty Estimation
    • inAndersen, M. (ed.), John Wiley &Sons, Ltd.
    • Gupta, H.V., Beven, K.J. and Wagener, T. (2005). Model Calibration and Uncertainty Estimation, inAndersen, M. (ed.),Encyclopedia of Hydrological Sciences,John Wiley &Sons, Ltd, pp. 2015-2031.
    • (2005) Encyclopedia of Hydrological Sciences , pp. 2015-2031
    • Gupta, H.V.1    Beven, K.J.2    Wagener, T.3
  • 21
    • 33745561205 scopus 로고    scopus 로고
    • An Introduction to Variable and Feature Selection
    • Guyon, I. and Elisseeff, A. (2003). “An Introduction to Variable and Feature Selection,”The J. Machine Learning Research,3(7-8), 1157-1182.
    • (2003) The J. Machine Learning Research , vol.3 , Issue.7-8 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 22
    • 0024656259 scopus 로고
    • Probabilistic Estimates for Multivariate Analyses
    • Harr, M.E. (1989). “Probabilistic Estimates for Multivariate Analyses,”Appl. Math. Modelling,13, 313-318.
    • (1989) Appl. Math. Modelling , vol.13 , pp. 313-318
    • Harr, M.E.1
  • 23
  • 24
    • 0034738493 scopus 로고    scopus 로고
    • Statistical Modelling of Daily Streamflows Using Rainfall Input and Curve Number Technique
    • Kottegoda, N.T., Natale, L. and Raiteri, E. (2000). “Statistical Modelling of Daily Streamflows Using Rainfall Input and Curve Number Technique,”Journal of Hydrology,234, 170-186.
    • (2000) Journal of Hydrology , vol.234 , pp. 170-186
    • Kottegoda, N.T.1    Natale, L.2    Raiteri, E.3
  • 25
    • 0032853041 scopus 로고    scopus 로고
    • Bayesian Theory of Probabilistic Forecasting via Deterministic Hydrologic Model
    • Krzysztofowicz, R. (1999). “Bayesian Theory of Probabilistic Forecasting via Deterministic Hydrologic Model,”Water Resources Research,35(9), 2739-2750.
    • (1999) Water Resources Research , vol.35 , Issue.9 , pp. 2739-2750
    • Krzysztofowicz, R.1
  • 26
    • 0035426007 scopus 로고    scopus 로고
    • The Case for Probabilistic Forecasting in Hydrology
    • Krzysztofowicz, R. (2001). “The Case for Probabilistic Forecasting in Hydrology,”J. Hydrology,249, 2-9.
    • (2001) J. Hydrology , vol.249 , pp. 2-9
    • Krzysztofowicz, R.1
  • 27
    • 0032214428 scopus 로고    scopus 로고
    • Monte Carlo Assessment of Parameter Uncertainty in Conceptual Catchment Models: The Metropolis Algorithm
    • Kuczera, G. and Parent, E. (1998). “Monte Carlo Assessment of Parameter Uncertainty in Conceptual Catchment Models: The Metropolis Algorithm,”J. Hydrology,211, 69-85.
    • (1998) J. Hydrology , vol.211 , pp. 69-85
    • Kuczera, G.1    Parent, E.2
  • 28
    • 34247990255 scopus 로고
    • On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown
    • Lilliefors, H.W. (1967). “On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown,”J. American Statistical Association,62(318), 399-402.
    • (1967) J. American Statistical Association , vol.62 , Issue.318 , pp. 399-402
    • Lilliefors, H.W.1
  • 29
  • 30
    • 36648998731 scopus 로고    scopus 로고
    • Uncertainty in Hydrologic Modelling: Toward an Integrated Data Assimilation Framework
    • Liu, Y. and Gupta, H.V. (2007). “Uncertainty in Hydrologic Modelling: Toward an Integrated Data Assimilation Framework,”Water Resources Research,43(7), W07401.
    • (2007) Water Resources Research , vol.43 , Issue.7 , pp. W07401
    • Liu, Y.1    Gupta, H.V.2
  • 31
    • 0037388805 scopus 로고    scopus 로고
    • Improved First Order Second Moment Method for Uncertainty Estimation in Flood Forecasting
    • Maskey, S. and Guinot, V. (2003). “Improved First Order Second Moment Method for Uncertainty Estimation in Flood Forecasting,”Hydrological Sciences J.,48(2), 183-196.
    • (2003) Hydrological Sciences J , vol.48 , Issue.2 , pp. 183-196
    • Maskey, S.1    Guinot, V.2
  • 32
    • 7244247371 scopus 로고    scopus 로고
    • Treatment of Precipitation Uncertainty in Rainfall-Runoff Modelling: A Fuzzy Set Approach
    • Maskey, S., Guinot, V. and Price, R.K. (2004). “Treatment of Precipitation Uncertainty in Rainfall-Runoff Modelling: A Fuzzy Set Approach,”Advances in Water Resources,27, 889-898.
    • (2004) Advances in Water Resources , vol.27 , pp. 889-898
    • Maskey, S.1    Guinot, V.2    Price, R.K.3
  • 33
    • 0026614965 scopus 로고
    • An Improved First-Order Reliability Approach forAssessing Uncertainties in Hydrological Modelling
    • Melching, C.S. (1992). “An Improved First-Order Reliability Approach forAssessing Uncertainties in Hydrological Modelling,”J. Hydrology,132, 157-177.
    • (1992) J. Hydrology , vol.132 , pp. 157-177
    • Melching, C.S.1
  • 34
    • 0030159380 scopus 로고    scopus 로고
    • Artificial Neural Networks as Rainfall-Runoff Models
    • Minns, A.W. and Hall, M.J. (1996). “Artificial Neural Networks as Rainfall-Runoff Models,”Hydrological Science J.,41, 399-417.
    • (1996) Hydrological Science J , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 36
    • 2542555104 scopus 로고    scopus 로고
    • A Stochastic Approach for Assessing the Uncertainty of Rainfall-Runoff Simulations
    • Montanari, A. and Brath, A. (2004). “A Stochastic Approach for Assessing the Uncertainty of Rainfall-Runoff Simulations,”Water Resources Research,40, W01106.
    • (2004) Water Resources Research , vol.40 , pp. W01106
    • Montanari, A.1    Brath, A.2
  • 37
    • 33947533125 scopus 로고    scopus 로고
    • What Do We Mean By Uncertainty? The Need for a Consistent Wording About Uncertainty Assessment in Hydrology
    • Montanari, A. (2007). “What Do We Mean By Uncertainty? The Need for a Consistent Wording About Uncertainty Assessment in Hydrology,”Hydrological Processes,21(6), 841-845.
    • (2007) Hydrological Processes , vol.21 , Issue.6 , pp. 841-845
    • Montanari, A.1
  • 38
    • 34249788819 scopus 로고    scopus 로고
    • Special Issue: HYREX: The Hydrological Radar Experiment
    • Moore, B. (2002). “Special Issue: HYREX: The Hydrological Radar Experiment,”Hydrology and Earth System Sciences,4(4), 521-522.
    • (2002) Hydrology and Earth System Sciences , vol.4 , Issue.4 , pp. 521-522
    • Moore, B.1
  • 39
    • 0014776873 scopus 로고
    • River Flow Forecasting Through Conceptual Models Part 1 - A Discussion Principles
    • Nash, J.E. and Sutcliffe, J.V. (1970). “River Flow Forecasting Through Conceptual Models Part 1 - A Discussion Principles,”J. Hydrology,10, 282-290.
    • (1970) J. Hydrology , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 42
    • 0002151230 scopus 로고    scopus 로고
    • Construction, calibration and validation of hydrological models
    • inAbbott, M.B. andRefsgaard, J.C. (eds.), Water Science and Technology Library, Kluwer Academic Publishers, Dordrecht, The Netherlands
    • Refsgaard, J.C. and Storm, B. (1996). Construction, calibration and validation of hydrological models, inAbbott, M.B. andRefsgaard, J.C. (eds.),Distributed Hydrological Modelling,Water Science and Technology Library, Kluwer Academic Publishers, Dordrecht, The Netherlands, Vol. 22, pp. 41-54.
    • (1996) Distributed Hydrological Modelling , vol.22 , pp. 41-54
    • Refsgaard, J.C.1    Storm, B.2
  • 44
    • 65849174026 scopus 로고    scopus 로고
    • Quantifying Uncertainty of Flood Forecasting Using Data Driven Modelling
    • IAHR, Seoul, South Korea
    • Shrestha, D.L. and Solomatine, D.P. (2005). “Quantifying Uncertainty of Flood Forecasting Using Data Driven Modelling,”Proceedings ofIAHR Congress,IAHR, Seoul, South Korea, pp. 715-726.
    • (2005) Proceedings Ofiahr Congress , pp. 715-726
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 46
    • 33645987256 scopus 로고    scopus 로고
    • Machine Learning Approaches for Estimation of Prediction Interval for the Model Output
    • Shrestha, D.L. and Solomatine, D.P. (2006). “Machine Learning Approaches for Estimation of Prediction Interval for the Model Output,”Neural Networks,19(2), 225-235.
    • (2006) Neural Networks , vol.19 , Issue.2 , pp. 225-235
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 47
    • 38549089135 scopus 로고    scopus 로고
    • Instance-Based Learning Compared to Other Data-Driven Methods in Hydrological Forecasting
    • Solomatine, D., Maskey, M. and Shrestha, D.L. (2008). “Instance-Based Learning Compared to Other Data-Driven Methods in Hydrological Forecasting,”Hydrological Process,22, 275-287.
    • (2008) Hydrological Process , vol.22 , pp. 275-287
    • Solomatine, D.1    Maskey, M.2    Shrestha, D.L.3
  • 48
    • 0033384302 scopus 로고    scopus 로고
    • Automatic Calibration of Groundwater Models Using Global Optimization Techniques
    • Solomatine, D.P., Dibike, Y. and Kukuric, N. (1999). “Automatic Calibration of Groundwater Models Using Global Optimization Techniques,”Hydrological Science J,44(6), 879-894.
    • (1999) Hydrological Science J , vol.44 , Issue.6 , pp. 879-894
    • Solomatine, D.P.1    Dibike, Y.2    Kukuric, N.3
  • 49
    • 0037565156 scopus 로고    scopus 로고
    • Model Trees as an Alternative to Neural Networks in Rainfall-Runoff Modelling
    • Solomatine, D.P. and Dulal, K.N. (2003). “Model Trees as an Alternative to Neural Networks in Rainfall-Runoff Modelling,”Hydrological Sciences J.,48(3), 399-411.
    • (2003) Hydrological Sciences J , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 50
    • 39449089195 scopus 로고    scopus 로고
    • Data-Driven Modelling: Some Past Experiences and New Approaches
    • Special Issue on Data Driven Modeling and Evolutionary Optimization for River Basin Management
    • Solomatine, D.P. and Ostfeld, A. (2008). “Data-Driven Modelling: Some Past Experiences and New Approaches,”J. Hydroinformatics,Special Issue on Data Driven Modeling and Evolutionary Optimization for River Basin Management, 10(1), 3-22.
    • (2008) J. Hydroinformatics , vol.10 , Issue.1 , pp. 3-22
    • Solomatine, D.P.1    Ostfeld, A.2
  • 51
    • 0003223756 scopus 로고
    • Tank Model
    • inSingh, V.P. (ed.), Water Resources Publication, Colorado, USA
    • Sugawara, M. (1995). Tank Model, inSingh, V.P. (ed.),Computer Models of Watershed Hydrology,Water Resources Publication, Colorado, USA, pp. 165-214.
    • (1995) Computer Models of Watershed Hydrology , pp. 165-214
    • Sugawara, M.1
  • 52
    • 0344568284 scopus 로고    scopus 로고
    • Uncertainty and Reliability Analysis
    • inMays, L.W. (ed.), McGraw-Hill Book Company
    • Tung, Y.-K. (1996). Uncertainty and Reliability Analysis, inMays, L.W. (ed.).Water Resources Handbook,McGraw-Hill Book Company, pp. 7.1-7.65.
    • (1996) Water Resources Handbook , pp. 1-7
    • Tung, Y.-K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.