-
1
-
-
33748327260
-
Information theory and artificial intelligence to manage uncertainty in hydrodynamic and hydrological models. PhD Thesis
-
Delft, The Netherlands
-
Abebe, A.J. (2004). Information theory and artificial intelligence to manage uncertainty in hydrodynamic and hydrological models. PhD Thesis, UNESCO-IHE Institute for Water Education, Delft, The Netherlands.
-
(2004)
UNESCO-IHE Institute for Water Education
-
-
Abebe, A.J.1
-
2
-
-
0034254196
-
Comparing Neural Network and Autoregressive Moving Average Techniques for the Provision of Continuous River Flow Forecasts in Two Contrasting Catchments
-
Abrahart, R.J. andSee, L. (2000). “Comparing Neural Network and Autoregressive Moving Average Techniques for the Provision of Continuous River Flow Forecasts in Two Contrasting Catchments,”Hydrological Processes,14, 2157-2172.
-
(2000)
Hydrological Processes
, vol.14
, pp. 2157-2172
-
-
Abrahart, R.J.1
See, L.2
-
3
-
-
0025725905
-
Instance-Based Learning Algorithms
-
Aha, D., Kibler, D. and Albert, M. (1991). “Instance-Based Learning Algorithms,”Machine Learning,6, 37-66.
-
(1991)
Machine Learning
, vol.6
, pp. 37-66
-
-
Aha, D.1
Kibler, D.2
Albert, M.3
-
4
-
-
0003491818
-
Crop evapotranspiration: Guidelines for computing crop water requirements, FAO
-
Allen, R.G., Pereira, S.L., Raes, D. and Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements, FAO, Rome.
-
(1998)
Rome
-
-
Allen, R.G.1
Pereira, S.L.2
Raes, D.3
Smith, M.4
-
5
-
-
0005598149
-
Forecasting River Discharges in the Presence of Chaos and Noise
-
inMarsalek,J.(ed.), Kluwer, Dordrecht
-
Babovic, V. and Keijzer, M. (1999). Forecasting River Discharges in the Presence of Chaos and Noise, inMarsalek,J.(ed.).Coping with Floods: Lesson Learned from Recent Experiences,Kluwer, Dordrecht.
-
(1999)
Coping with Floods: Lesson Learned from Recent Experiences
-
-
Babovic, V.1
Keijzer, M.2
-
6
-
-
0025676796
-
Fuzzy Regression in Hydrology
-
Bardossy, A., Bogardi, I. and Duckstein, L. (1990). “Fuzzy Regression in Hydrology,”Water Resources Research,26(7), 1497-1508.
-
(1990)
Water Resources Research
, vol.26
, Issue.7
, pp. 1497-1508
-
-
Bardossy, A.1
Bogardi, I.2
Duckstein, L.3
-
7
-
-
0034441541
-
The Sensitivity of Catchment Runoff Models to Rainfall Data at Different Spatial Scales
-
Bell, V.A. and Moore, R.J. (2000). “The Sensitivity of Catchment Runoff Models to Rainfall Data at Different Spatial Scales,”Hydrology and Earth System Sciences,4(4), 653-667.
-
(2000)
Hydrology and Earth System Sciences
, vol.4
, Issue.4
, pp. 653-667
-
-
Bell, V.A.1
Moore, R.J.2
-
8
-
-
0004231183
-
Development and Application of a Conceptual Runoff Model for Scandinavian Catchments
-
Bergstrom, S. (1976). “Development and Application of a Conceptual Runoff Model for Scandinavian Catchments,” SMHI Reports RHO, No. 7, Norrkoping.
-
(1976)
SMHI Reports RHO, No. 7, Norrkoping
-
-
Bergstrom, S.1
-
9
-
-
0027009437
-
The Future of Distributed Models: Model Calibration and Uncertainty Prediction
-
Beven, K. and Binley, A. (1992). “The Future of Distributed Models: Model Calibration and Uncertainty Prediction,”Hydrological Processes,6, 279-298.
-
(1992)
Hydrological Processes
, vol.6
, pp. 279-298
-
-
Beven, K.1
Binley, A.2
-
10
-
-
0035426008
-
Equifinality, Data Assimilation, and Uncertainty Estimation in Mechanistic Modelling of Complex Environmental Systems Using the GLUE Methodology
-
Beven, K. and Freer, J. (2001). “Equifinality, Data Assimilation, and Uncertainty Estimation in Mechanistic Modelling of Complex Environmental Systems Using the GLUE Methodology,”J. Hydrology,249, 11-29.
-
(2001)
J. Hydrology
, vol.249
, pp. 11-29
-
-
Beven, K.1
Freer, J.2
-
11
-
-
48149110539
-
Pattern Recognition with Fuzzy Objective Function Algorithms
-
Norwell, MA, USA
-
Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell, MA, USA.
-
(1981)
Kluwer Academic Publishers
-
-
Bezdek, J.C.1
-
12
-
-
10644295753
-
Input Determination for Neural Network Models in Water Resources Applications. Part 1 - background and methodology
-
Bowden, G.J., Dandy, G.C. and Maier, H.R. (2005). “Input Determination for Neural Network Models in Water Resources Applications. Part 1 - background and methodology,”J. Hydrology,301, 93-107.
-
(2005)
J. Hydrology
, vol.301
, pp. 93-107
-
-
Bowden, G.J.1
Dandy, G.C.2
Maier, H.R.3
-
14
-
-
33746834358
-
Identification of Support Vector Machines for Runoff Modelling
-
Bray, M. and Han, D. (2004). “Identification of Support Vector Machines for Runoff Modelling,”J. Hydroinformatics,6, 265-280.
-
(2004)
J. Hydroinformatics
, vol.6
, pp. 265-280
-
-
Bray, M.1
Han, D.2
-
15
-
-
34250020342
-
Assessing uncertainty propagation through physically based models of soil water flow and solute transport
-
inAndersen, M. (ed.), John Wiley &Sons, Ltd.
-
Brown, J.D. and Heuvelink, G.B.M. (2005). Assessing uncertainty propagation through physically based models of soil water flow and solute transport, inAndersen, M. (ed.).Encyclopedia of Hydrological Sciences,John Wiley &Sons, Ltd, 1181-1195.
-
(2005)
Encyclopedia of Hydrological Sciences
, pp. 1181-1195
-
-
Brown, J.D.1
Heuvelink, G.B.M.2
-
16
-
-
0032005702
-
An Artificial Neural Network Approach to Rainfall-Runoff Modelling
-
Dawson, C.W. and Wilby, R. (1998). “An Artificial Neural Network Approach to Rainfall-Runoff Modelling,”Hydrological Science J.,43(1), 47-66.
-
(1998)
Hydrological Science J
, vol.43
, Issue.1
, pp. 47-66
-
-
Dawson, C.W.1
Wilby, R.2
-
17
-
-
0035398081
-
Model Induction with Support Vector Machines: Introduction and Applications
-
Dibike, Y.B., Velickov, S., Solomatine, D. and Abbott, M.B. (2001). “Model Induction with Support Vector Machines: Introduction and Applications,”J. Comput. Civil Eng.,15(3), 208-216.
-
(2001)
J. Comput. Civil Eng
, vol.15
, Issue.3
, pp. 208-216
-
-
Dibike, Y.B.1
Velickov, S.2
Solomatine, D.3
Abbott, M.B.4
-
18
-
-
13244265879
-
Assessing Uncertainties in a Conceptual Water Balance Model Using Bayesian Methodology
-
Engeland, K., Xu, C.-Y. and Gottschalk, L. (2005). “Assessing Uncertainties in a Conceptual Water Balance Model Using Bayesian Methodology,”Hydrological Sciences J.,50(1), 45-63.
-
(2005)
Hydrological Sciences J
, vol.50
, Issue.1
, pp. 45-63
-
-
Engeland, K.1
Xu, C.-Y.2
Gottschalk, L.3
-
19
-
-
0003489163
-
-
Kluwer Academic Publishers Norwell, MA, USA
-
Govindaraju, R.S. and Rao, A.R. (2000). Artificial Neural Networks in Hydrology. Kluwer Academic Publishers Norwell, MA, USA, 329 p.
-
(2000)
Artificial Neural Networks in Hydrology
, pp. 329
-
-
Govindaraju, R.S.1
Rao, A.R.2
-
20
-
-
26444548489
-
Model Calibration and Uncertainty Estimation
-
inAndersen, M. (ed.), John Wiley &Sons, Ltd.
-
Gupta, H.V., Beven, K.J. and Wagener, T. (2005). Model Calibration and Uncertainty Estimation, inAndersen, M. (ed.),Encyclopedia of Hydrological Sciences,John Wiley &Sons, Ltd, pp. 2015-2031.
-
(2005)
Encyclopedia of Hydrological Sciences
, pp. 2015-2031
-
-
Gupta, H.V.1
Beven, K.J.2
Wagener, T.3
-
21
-
-
33745561205
-
An Introduction to Variable and Feature Selection
-
Guyon, I. and Elisseeff, A. (2003). “An Introduction to Variable and Feature Selection,”The J. Machine Learning Research,3(7-8), 1157-1182.
-
(2003)
The J. Machine Learning Research
, vol.3
, Issue.7-8
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
22
-
-
0024656259
-
Probabilistic Estimates for Multivariate Analyses
-
Harr, M.E. (1989). “Probabilistic Estimates for Multivariate Analyses,”Appl. Math. Modelling,13, 313-318.
-
(1989)
Appl. Math. Modelling
, vol.13
, pp. 313-318
-
-
Harr, M.E.1
-
23
-
-
0002098934
-
A Bivariate Meta-Gaussian Density for Use in Hydrology
-
Kelly, K.S. and Krzysztofowicz, R. (1997). “A Bivariate Meta-Gaussian Density for Use in Hydrology,”Stochastic Hydrology and Hydraulics,11(1), 17-31.
-
(1997)
Stochastic Hydrology and Hydraulics
, vol.11
, Issue.1
, pp. 17-31
-
-
Kelly, K.S.1
Krzysztofowicz, R.2
-
24
-
-
0034738493
-
Statistical Modelling of Daily Streamflows Using Rainfall Input and Curve Number Technique
-
Kottegoda, N.T., Natale, L. and Raiteri, E. (2000). “Statistical Modelling of Daily Streamflows Using Rainfall Input and Curve Number Technique,”Journal of Hydrology,234, 170-186.
-
(2000)
Journal of Hydrology
, vol.234
, pp. 170-186
-
-
Kottegoda, N.T.1
Natale, L.2
Raiteri, E.3
-
25
-
-
0032853041
-
Bayesian Theory of Probabilistic Forecasting via Deterministic Hydrologic Model
-
Krzysztofowicz, R. (1999). “Bayesian Theory of Probabilistic Forecasting via Deterministic Hydrologic Model,”Water Resources Research,35(9), 2739-2750.
-
(1999)
Water Resources Research
, vol.35
, Issue.9
, pp. 2739-2750
-
-
Krzysztofowicz, R.1
-
26
-
-
0035426007
-
The Case for Probabilistic Forecasting in Hydrology
-
Krzysztofowicz, R. (2001). “The Case for Probabilistic Forecasting in Hydrology,”J. Hydrology,249, 2-9.
-
(2001)
J. Hydrology
, vol.249
, pp. 2-9
-
-
Krzysztofowicz, R.1
-
27
-
-
0032214428
-
Monte Carlo Assessment of Parameter Uncertainty in Conceptual Catchment Models: The Metropolis Algorithm
-
Kuczera, G. and Parent, E. (1998). “Monte Carlo Assessment of Parameter Uncertainty in Conceptual Catchment Models: The Metropolis Algorithm,”J. Hydrology,211, 69-85.
-
(1998)
J. Hydrology
, vol.211
, pp. 69-85
-
-
Kuczera, G.1
Parent, E.2
-
28
-
-
34247990255
-
On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown
-
Lilliefors, H.W. (1967). “On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown,”J. American Statistical Association,62(318), 399-402.
-
(1967)
J. American Statistical Association
, vol.62
, Issue.318
, pp. 399-402
-
-
Lilliefors, H.W.1
-
29
-
-
0031581519
-
Development and Test of the Distributed HBV-96 Hydrological Model
-
Lindstrom, G., Johansson, B., Persson, M., Gardelin, M. and Bergtrom, S. (1997). “Development and Test of the Distributed HBV-96 Hydrological Model,”J. Hydrology,201, 272-228.
-
(1997)
J. Hydrology
, vol.201
, pp. 272-228
-
-
Lindstrom, G.1
Johansson, B.2
Persson, M.3
Gardelin, M.4
Bergtrom, S.5
-
30
-
-
36648998731
-
Uncertainty in Hydrologic Modelling: Toward an Integrated Data Assimilation Framework
-
Liu, Y. and Gupta, H.V. (2007). “Uncertainty in Hydrologic Modelling: Toward an Integrated Data Assimilation Framework,”Water Resources Research,43(7), W07401.
-
(2007)
Water Resources Research
, vol.43
, Issue.7
, pp. W07401
-
-
Liu, Y.1
Gupta, H.V.2
-
31
-
-
0037388805
-
Improved First Order Second Moment Method for Uncertainty Estimation in Flood Forecasting
-
Maskey, S. and Guinot, V. (2003). “Improved First Order Second Moment Method for Uncertainty Estimation in Flood Forecasting,”Hydrological Sciences J.,48(2), 183-196.
-
(2003)
Hydrological Sciences J
, vol.48
, Issue.2
, pp. 183-196
-
-
Maskey, S.1
Guinot, V.2
-
32
-
-
7244247371
-
Treatment of Precipitation Uncertainty in Rainfall-Runoff Modelling: A Fuzzy Set Approach
-
Maskey, S., Guinot, V. and Price, R.K. (2004). “Treatment of Precipitation Uncertainty in Rainfall-Runoff Modelling: A Fuzzy Set Approach,”Advances in Water Resources,27, 889-898.
-
(2004)
Advances in Water Resources
, vol.27
, pp. 889-898
-
-
Maskey, S.1
Guinot, V.2
Price, R.K.3
-
33
-
-
0026614965
-
An Improved First-Order Reliability Approach forAssessing Uncertainties in Hydrological Modelling
-
Melching, C.S. (1992). “An Improved First-Order Reliability Approach forAssessing Uncertainties in Hydrological Modelling,”J. Hydrology,132, 157-177.
-
(1992)
J. Hydrology
, vol.132
, pp. 157-177
-
-
Melching, C.S.1
-
34
-
-
0030159380
-
Artificial Neural Networks as Rainfall-Runoff Models
-
Minns, A.W. and Hall, M.J. (1996). “Artificial Neural Networks as Rainfall-Runoff Models,”Hydrological Science J.,41, 399-417.
-
(1996)
Hydrological Science J
, vol.41
, pp. 399-417
-
-
Minns, A.W.1
Hall, M.J.2
-
36
-
-
2542555104
-
A Stochastic Approach for Assessing the Uncertainty of Rainfall-Runoff Simulations
-
Montanari, A. and Brath, A. (2004). “A Stochastic Approach for Assessing the Uncertainty of Rainfall-Runoff Simulations,”Water Resources Research,40, W01106.
-
(2004)
Water Resources Research
, vol.40
, pp. W01106
-
-
Montanari, A.1
Brath, A.2
-
37
-
-
33947533125
-
What Do We Mean By Uncertainty? The Need for a Consistent Wording About Uncertainty Assessment in Hydrology
-
Montanari, A. (2007). “What Do We Mean By Uncertainty? The Need for a Consistent Wording About Uncertainty Assessment in Hydrology,”Hydrological Processes,21(6), 841-845.
-
(2007)
Hydrological Processes
, vol.21
, Issue.6
, pp. 841-845
-
-
Montanari, A.1
-
38
-
-
34249788819
-
Special Issue: HYREX: The Hydrological Radar Experiment
-
Moore, B. (2002). “Special Issue: HYREX: The Hydrological Radar Experiment,”Hydrology and Earth System Sciences,4(4), 521-522.
-
(2002)
Hydrology and Earth System Sciences
, vol.4
, Issue.4
, pp. 521-522
-
-
Moore, B.1
-
39
-
-
0014776873
-
River Flow Forecasting Through Conceptual Models Part 1 - A Discussion Principles
-
Nash, J.E. and Sutcliffe, J.V. (1970). “River Flow Forecasting Through Conceptual Models Part 1 - A Discussion Principles,”J. Hydrology,10, 282-290.
-
(1970)
J. Hydrology
, vol.10
, pp. 282-290
-
-
Nash, J.E.1
Sutcliffe, J.V.2
-
42
-
-
0002151230
-
Construction, calibration and validation of hydrological models
-
inAbbott, M.B. andRefsgaard, J.C. (eds.), Water Science and Technology Library, Kluwer Academic Publishers, Dordrecht, The Netherlands
-
Refsgaard, J.C. and Storm, B. (1996). Construction, calibration and validation of hydrological models, inAbbott, M.B. andRefsgaard, J.C. (eds.),Distributed Hydrological Modelling,Water Science and Technology Library, Kluwer Academic Publishers, Dordrecht, The Netherlands, Vol. 22, pp. 41-54.
-
(1996)
Distributed Hydrological Modelling
, vol.22
, pp. 41-54
-
-
Refsgaard, J.C.1
Storm, B.2
-
44
-
-
65849174026
-
Quantifying Uncertainty of Flood Forecasting Using Data Driven Modelling
-
IAHR, Seoul, South Korea
-
Shrestha, D.L. and Solomatine, D.P. (2005). “Quantifying Uncertainty of Flood Forecasting Using Data Driven Modelling,”Proceedings ofIAHR Congress,IAHR, Seoul, South Korea, pp. 715-726.
-
(2005)
Proceedings Ofiahr Congress
, pp. 715-726
-
-
Shrestha, D.L.1
Solomatine, D.P.2
-
45
-
-
65849293353
-
Assessing Model Prediction Limits Using Fuzzy Clustering and Machine Learning
-
Nice, France
-
Shrestha, D.L, Rodriguez, J., Price, R.K. and Solomatine, D.P. (2006). “Assessing Model Prediction Limits Using Fuzzy Clustering and Machine Learning,”Proceedings of the Int. Conf. on Hydroinformatics,Nice, France.
-
(2006)
Proceedings of the Int. Conf. on Hydroinformatics
-
-
Shrestha, D.L.1
Rodriguez, J.2
Price, R.K.3
Solomatine, D.P.4
-
46
-
-
33645987256
-
Machine Learning Approaches for Estimation of Prediction Interval for the Model Output
-
Shrestha, D.L. and Solomatine, D.P. (2006). “Machine Learning Approaches for Estimation of Prediction Interval for the Model Output,”Neural Networks,19(2), 225-235.
-
(2006)
Neural Networks
, vol.19
, Issue.2
, pp. 225-235
-
-
Shrestha, D.L.1
Solomatine, D.P.2
-
47
-
-
38549089135
-
Instance-Based Learning Compared to Other Data-Driven Methods in Hydrological Forecasting
-
Solomatine, D., Maskey, M. and Shrestha, D.L. (2008). “Instance-Based Learning Compared to Other Data-Driven Methods in Hydrological Forecasting,”Hydrological Process,22, 275-287.
-
(2008)
Hydrological Process
, vol.22
, pp. 275-287
-
-
Solomatine, D.1
Maskey, M.2
Shrestha, D.L.3
-
48
-
-
0033384302
-
Automatic Calibration of Groundwater Models Using Global Optimization Techniques
-
Solomatine, D.P., Dibike, Y. and Kukuric, N. (1999). “Automatic Calibration of Groundwater Models Using Global Optimization Techniques,”Hydrological Science J,44(6), 879-894.
-
(1999)
Hydrological Science J
, vol.44
, Issue.6
, pp. 879-894
-
-
Solomatine, D.P.1
Dibike, Y.2
Kukuric, N.3
-
49
-
-
0037565156
-
Model Trees as an Alternative to Neural Networks in Rainfall-Runoff Modelling
-
Solomatine, D.P. and Dulal, K.N. (2003). “Model Trees as an Alternative to Neural Networks in Rainfall-Runoff Modelling,”Hydrological Sciences J.,48(3), 399-411.
-
(2003)
Hydrological Sciences J
, vol.48
, Issue.3
, pp. 399-411
-
-
Solomatine, D.P.1
Dulal, K.N.2
-
50
-
-
39449089195
-
Data-Driven Modelling: Some Past Experiences and New Approaches
-
Special Issue on Data Driven Modeling and Evolutionary Optimization for River Basin Management
-
Solomatine, D.P. and Ostfeld, A. (2008). “Data-Driven Modelling: Some Past Experiences and New Approaches,”J. Hydroinformatics,Special Issue on Data Driven Modeling and Evolutionary Optimization for River Basin Management, 10(1), 3-22.
-
(2008)
J. Hydroinformatics
, vol.10
, Issue.1
, pp. 3-22
-
-
Solomatine, D.P.1
Ostfeld, A.2
-
51
-
-
0003223756
-
Tank Model
-
inSingh, V.P. (ed.), Water Resources Publication, Colorado, USA
-
Sugawara, M. (1995). Tank Model, inSingh, V.P. (ed.),Computer Models of Watershed Hydrology,Water Resources Publication, Colorado, USA, pp. 165-214.
-
(1995)
Computer Models of Watershed Hydrology
, pp. 165-214
-
-
Sugawara, M.1
-
52
-
-
0344568284
-
Uncertainty and Reliability Analysis
-
inMays, L.W. (ed.), McGraw-Hill Book Company
-
Tung, Y.-K. (1996). Uncertainty and Reliability Analysis, inMays, L.W. (ed.).Water Resources Handbook,McGraw-Hill Book Company, pp. 7.1-7.65.
-
(1996)
Water Resources Handbook
, pp. 1-7
-
-
Tung, Y.-K.1
-
53
-
-
0026204245
-
A Validity Measure for Fuzzy Clustering
-
Xie, X.L. and Beni, G. (1991). “A Validity Measure for Fuzzy Clustering,”IEEE Transactions on Pattern Analysis and Machine Intelligence,13(8), 841-847.
-
(1991)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.13
, Issue.8
, pp. 841-847
-
-
Xie, X.L.1
Beni, G.2
|