메뉴 건너뛰기




Volumn 49, Issue 1, 2010, Pages 252-259

Efficient recursive principal component analysis algorithms for process monitoring

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE SUBSPACE TRACKING; COMPUTATION COSTS; CONTINUOUS STIRRED TANK REACTOR; DATA PROJECTION; EIGENVALUE DECOMPOSITION; EIGENVALUES; EIGENVECTORS; FALSE ALARMS; FIRST-ORDER; MONITORING SYSTEM; NONISOTHERMAL; PERTURBATION ANALYSIS; PRINCIPAL COMPONENTS; SAMPLE COVARIANCE MATRIX;

EID: 74249108882     PISSN: 08885885     EISSN: None     Source Type: Journal    
DOI: 10.1021/ie900720w     Document Type: Article
Times cited : (95)

References (31)
  • 1
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space. Philos. Mag. 1901, 2, 559-572.
    • (1901) Philos. Mag. , vol.2 , pp. 559-572
    • Pearson, K.1
  • 2
    • 0001710505 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psych. 1933, 24, 417-441.
    • (1933) J. Educ. Psych. , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 4
    • 0037972122 scopus 로고    scopus 로고
    • Eigenspace updating for non-stationary process and its application to face recognition
    • Liu, X.; Chen, T.; Thornton, S. Eigenspace Updating for Non- Stationary Process and Its Application to Face Recognition. Pattern Recognit. 2003, 36, 1945-1959.
    • (2003) Pattern Recognit. , vol.36 , pp. 1945-1959
    • Liu, X.1    Chen, T.2    Thornton, S.3
  • 7
    • 0028784108 scopus 로고
    • Multivariate statistical methods for monitoring continuous processes: Assessment of discrimination power of disturbance models and diagnosis of multiple disturbances
    • Raich, A. C.; Çinar, A. Multivariate statistical methods for monitoring continuous processes: assessment of discrimination power of disturbance models and diagnosis of multiple disturbances. Chemom. Intell. Lab. Syst. 1995, 30, 37-48.
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , pp. 37-48
    • Raich, A.C.1    Çinar, A.2
  • 8
    • 0030211997 scopus 로고    scopus 로고
    • Batch tracking via nonlinear principal component analysis
    • Dong, D.; McAvoy, T. J. Batch tracking via nonlinear principal component analysis. AIChE J. 1996, 42, 2199-2208.
    • (1996) AIChE J. , vol.42 , pp. 2199-2208
    • Dong, D.1    McAvoy, T.J.2
  • 9
    • 0028354319 scopus 로고
    • Exponentially weighted moving principal component analysis and projection to latent structures
    • Wold, S. Exponentially weighted moving principal component analysis and projection to latent structures. Chemom. Intell. Lab. Syst. 1994, 23, 149-161.
    • (1994) Chemom. Intell. Lab. Syst. , vol.23 , pp. 149-161
    • Wold, S.1
  • 11
    • 0038198780 scopus 로고    scopus 로고
    • Recursive partial least squares algorithms for monitoring complex industrial processes
    • Wang, X.; Kruger, U.; Lennox, B. Recursive partial least squares algorithms for monitoring complex industrial processes. Control Eng. Practice 2003, 11, 613-632.
    • (2003) Control Eng. Practice , vol.11 , pp. 613-632
    • Wang, X.1    Kruger, U.2    Lennox, B.3
  • 12
    • 31544440191 scopus 로고    scopus 로고
    • Robust recursive principal component analysis modeling for adaptive monitoring
    • Jin., H.; Lee, Y.-H.; Lee, G.; Han, C. Robust Recursive Principal Component Analysis Modeling for Adaptive Monitoring. Ind. Eng. Chem. Res. 2006, 45, 696-703.
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 696-703
    • Jin., H.1    Lee, Y.-H.2    Lee, G.3    Han, C.4
  • 13
    • 33646536772 scopus 로고    scopus 로고
    • Adaptive multivariate statistical process control for monitoring time-varying processes
    • Choi, S. W.; Martin, E. B.; Morris, A. J.; Lee, I.-B. Adaptive Multivariate Statistical Process Control for Monitoring Time-Varying Processes. Ind. Eng. Chem. Res. 2006, 45, 3108-3118.
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 3108-3118
    • Choi, S.W.1    Martin, E.B.2    Morris, A.J.3    Lee, I.-B.4
  • 14
    • 38849098368 scopus 로고    scopus 로고
    • Variable MWPCA for adaptive process monitoring
    • He, X. B.; Yang, Y. P. Variable MWPCA for Adaptive Process Monitoring. Ind. Eng. Chem. Res. 2008, 47, 419-427.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 419-427
    • He, X.B.1    Yang, Y.P.2
  • 17
    • 22944436794 scopus 로고    scopus 로고
    • Process monitoring approach using fast moving window PCA
    • Wang, X.; Kruger, U.; Irwin, G. Process monitoring approach using fast moving window PCA. Ind. Eng. Chem. Res. 2005, 44, 5691-5702.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 5691-5702
    • Wang, X.1    Kruger, U.2    Irwin, G.3
  • 18
    • 64249101035 scopus 로고    scopus 로고
    • Moving window kernel PCA for adaptive monitoring of nonlinear processes
    • Liu, X.; Kruger, U.; Littler, T.; Xie, L.; Wang, S. Moving window kernel PCA for adaptive monitoring of nonlinear processes. Chemom. Intell. Lab. Syst. 2009, 96, 132-143.
    • (2009) Chemom. Intell. Lab. Syst. , vol.96 , pp. 132-143
    • Liu, X.1    Kruger, U.2    Littler, T.3    Xie, L.4    Wang, S.5
  • 21
    • 0036903144 scopus 로고    scopus 로고
    • Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition
    • Hall, P.; Marshall, D.; Martin, R. Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition. Image Vision Comput. 2002, 20, 1009-1016.
    • (2002) Image Vision Comput. , vol.20 , pp. 1009-1016
    • Hall, P.1    Marshall, D.2    Martin, R.3
  • 22
    • 0028516278 scopus 로고
    • Adaptive eigendecomposition of data covariance matrices based on first-order perturbations
    • Champagne, B. Adaptive Eigendecomposition of Data Covariance Matrices Based on First-Order Perturbations. IEEE Trans. Signal Process. 1994, 42, 2758-2770.
    • (1994) IEEE Trans. Signal Process. , vol.42 , pp. 2758-2770
    • Champagne, B.1
  • 23
    • 39649107123 scopus 로고    scopus 로고
    • Efficient adaptive SVD algorithm for MIMO applications
    • Willink, T. Efficient Adaptive SVD Algorithm for MIMO Applications. IEEE Trans. Signal Process. 2008, 56, 615-622.
    • (2008) IEEE Trans. Signal Process. , vol.56 , pp. 615-622
    • Willink, T.1
  • 25
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin, S. J. Statistical process monitoring: basics and beyond. J. Chemom. 2003, 17, 480-502.
    • (2003) J. Chemom. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 28
    • 0028576704 scopus 로고
    • Determination of the number of principal components for disturbance detection and isolation
    • Himes, D.; Storer, R.; Georgakis, C. Determination of the number of principal components for disturbance detection and isolation. Proc. Am. Control Conf. 1994, 1279-1283.
    • (1994) Proc. Am. Control Conf. , pp. 1279-1283
    • Himes, D.1    Storer, R.2    Georgakis, C.3
  • 29
    • 0033230994 scopus 로고    scopus 로고
    • Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods
    • Valle, S.; Li, W.; Qin, S. Selection of the Number of Principal Components: The Variance of the Reconstruction Error Criterion with a Comparison to other Methods. Ind. Eng. Chem. Res. 1999, 38, 4389-4401.
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 4389-4401
    • Valle, S.1    Li, W.2    Qin, S.3
  • 30
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • Jackson, J. E.; Mudholkar, G. Control procedures for residuals associated with principal component analysis. J. Process Control 1979, 21, 341-349.
    • (1979) J. Process Control , vol.21 , pp. 341-349
    • Jackson, J.E.1    Mudholkar, G.2
  • 31
    • 0035427805 scopus 로고    scopus 로고
    • Fault diagnosis with multivariate statistical models part I: Using steady state fault signatures
    • Yoon, S.; MacGregor, J. F. Fault Diagnosis With Multivariate Statistical Models Part I: Using Steady State Fault Signatures. J. Process Control 2001, 11, 387-400.
    • (2001) J. Process Control , vol.11 , pp. 387-400
    • Yoon, S.1    MacGregor, J.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.