메뉴 건너뛰기




Volumn 63, Issue 8, 2008, Pages 2252-2266

Nonlinear multiscale modelling for fault detection and identification

Author keywords

Fault detection and diagnosis; Kernel principal component analysis; Multiresolution analysis; Multiscale kernel principal component analysis; Multivariate statistical process control

Indexed keywords

COMPUTER SIMULATION; MATHEMATICAL MODELS; MULTIRESOLUTION ANALYSIS; STATISTICAL METHODS;

EID: 40949103011     PISSN: 00092509     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ces.2008.01.022     Document Type: Article
Times cited : (47)

References (35)
  • 1
    • 0037392450 scopus 로고    scopus 로고
    • Multiscale SPC using wavelets: theoretical analysis and properties
    • Aradhye H.B., Bakshi B.R., Strauss R.A., and Davis J.F. Multiscale SPC using wavelets: theoretical analysis and properties. A.I.Ch.E. Journal 49 4 (2003) 939-958
    • (2003) A.I.Ch.E. Journal , vol.49 , Issue.4 , pp. 939-958
    • Aradhye, H.B.1    Bakshi, B.R.2    Strauss, R.A.3    Davis, J.F.4
  • 2
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • Bakshi B.R. Multiscale PCA with application to multivariate statistical process monitoring. A.I.Ch.E. Journal 44 7 (1998) 1596-1610
    • (1998) A.I.Ch.E. Journal , vol.44 , Issue.7 , pp. 1596-1610
    • Bakshi, B.R.1
  • 3
    • 0000235653 scopus 로고
    • Some theorems on quadratic forms applied on the study of analysis of variance problems: effect of inequality of variance in one-way classification
    • Box G.E.P. Some theorems on quadratic forms applied on the study of analysis of variance problems: effect of inequality of variance in one-way classification. The Annals of Mathematical Statistics 25 (1954) 290-302
    • (1954) The Annals of Mathematical Statistics , vol.25 , pp. 290-302
    • Box, G.E.P.1
  • 4
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • Cho J.-H., Lee J.-M., Choi S.W., Lee D., and Lee I. Fault identification for process monitoring using kernel principal component analysis. Chemical Engineering Science 60 (2005) 279-288
    • (2005) Chemical Engineering Science , vol.60 , pp. 279-288
    • Cho, J.-H.1    Lee, J.-M.2    Choi, S.W.3    Lee, D.4    Lee, I.5
  • 5
    • 10044259622 scopus 로고    scopus 로고
    • Nonlinear dynamic process monitoring based on dynamic kernel PCA
    • Choi S., and Lee I. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chemical Engineering Science 59 (2004) 5897-5908
    • (2004) Chemical Engineering Science , vol.59 , pp. 5897-5908
    • Choi, S.1    Lee, I.2
  • 8
    • 40949133033 scopus 로고    scopus 로고
    • Choi, S.W., Martin, E.B., Morris, A.J., Lee, I.-B., 2006. Non-linear multiscale fault detection and identification. In: 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Beijing, pp. 145-150.
    • Choi, S.W., Martin, E.B., Morris, A.J., Lee, I.-B., 2006. Non-linear multiscale fault detection and identification. In: 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Beijing, pp. 145-150.
  • 9
    • 0043015539 scopus 로고    scopus 로고
    • Non-linear principal component analysis-based on principal curves and neural networks
    • Dong D., and McAvoy T.J. Non-linear principal component analysis-based on principal curves and neural networks. Computers and Chemical Engineering 20 (1996) 65-78
    • (1996) Computers and Chemical Engineering , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 10
    • 0042074083 scopus 로고    scopus 로고
    • Confusion over measures of evidence (p's) versus errors (alpha's) in classical statistical testing
    • Hubbard R., and Bayarri M.J. Confusion over measures of evidence (p's) versus errors (alpha's) in classical statistical testing. American Statistician 57 (2003) 171-178
    • (2003) American Statistician , vol.57 , pp. 171-178
    • Hubbard, R.1    Bayarri, M.J.2
  • 12
    • 1942468131 scopus 로고    scopus 로고
    • Evolution of multivariate statistical process control: application of independent component analysis and external analysis
    • Kano M., Hasebe S., Hashimoto I., and Ohno H. Evolution of multivariate statistical process control: application of independent component analysis and external analysis. Computers and Chemical Engineering 28 (2004) 1157-1166
    • (2004) Computers and Chemical Engineering , vol.28 , pp. 1157-1166
    • Kano, M.1    Hasebe, S.2    Hashimoto, I.3    Ohno, H.4
  • 13
    • 2142640604 scopus 로고    scopus 로고
    • PCA of wavelet transformed process data for monitoring
    • Kosanovich K.A., and Piovoso M.J. PCA of wavelet transformed process data for monitoring. Intelligent Data Analysis 1 (1997) 85-99
    • (1997) Intelligent Data Analysis , vol.1 , pp. 85-99
    • Kosanovich, K.A.1    Piovoso, M.J.2
  • 15
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: the wavelet representation
    • Mallet S.G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11 7 (1989) 674-693
    • (1989) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.11 , Issue.7 , pp. 674-693
    • Mallet, S.G.1
  • 17
    • 0013362753 scopus 로고    scopus 로고
    • McPherson, L., Martin, E.B., Morris, A.J., 2002. Super model based techniques for batch process performance monitoring. In: Proceedings of the 12th European Symposium on Computer Aided Process Engineering (ESCAPE 12), pp. 523-528.
    • McPherson, L., Martin, E.B., Morris, A.J., 2002. Super model based techniques for batch process performance monitoring. In: Proceedings of the 12th European Symposium on Computer Aided Process Engineering (ESCAPE 12), pp. 523-528.
  • 19
    • 0037106519 scopus 로고    scopus 로고
    • Multivariate process monitoring and fault diagnosis by multi-scale PCA
    • Misra M., Yue H.H., Qin S.J., and Ling C. Multivariate process monitoring and fault diagnosis by multi-scale PCA. Computers and Chemical Engineering 26 9 (2002) 1281-1293
    • (2002) Computers and Chemical Engineering , vol.26 , Issue.9 , pp. 1281-1293
    • Misra, M.1    Yue, H.H.2    Qin, S.J.3    Ling, C.4
  • 21
    • 0031208457 scopus 로고    scopus 로고
    • Statistical monitoring of multivariable dynamic processes with state space models
    • Negiz A., and Cinar A. Statistical monitoring of multivariable dynamic processes with state space models. A.I.Ch.E. Journal 43 8 (1997) 209-221
    • (1997) A.I.Ch.E. Journal , vol.43 , Issue.8 , pp. 209-221
    • Negiz, A.1    Cinar, A.2
  • 22
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P., and MacGregor J.F. Multivariate SPC charts for monitoring batch processes. Technometrics 37 (1995) 41-59
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 24
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • Russell E.L., Chiang L.H., and Braatz R.D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems 51 (2000) 81-93
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.51 , pp. 81-93
    • Russell, E.L.1    Chiang, L.H.2    Braatz, R.D.3
  • 25
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A.J., and Müller K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10 (1998) 1299-1319
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 26
    • 14044252742 scopus 로고    scopus 로고
    • One-class support vector machines-an application in machine fault detection and classification
    • Shin H.J., Eom D.-H., and Kim S.-S. One-class support vector machines-an application in machine fault detection and classification. Computers & Industrial Engineering 48 (2005) 395-408
    • (2005) Computers & Industrial Engineering , vol.48 , pp. 395-408
    • Shin, H.J.1    Eom, D.-H.2    Kim, S.-S.3
  • 27
    • 0037098685 scopus 로고    scopus 로고
    • Statistical performance monitoring of dynamic multivariate processes using state space modelling
    • Simoglou A., Martin E.B., and Morris A.J. Statistical performance monitoring of dynamic multivariate processes using state space modelling. Computers and Chemical Engineering 26 (2002) 909-920
    • (2002) Computers and Chemical Engineering , vol.26 , pp. 909-920
    • Simoglou, A.1    Martin, E.B.2    Morris, A.J.3
  • 29
    • 34249106480 scopus 로고    scopus 로고
    • A study on the number of principal components and sensitivity of fault detection using PCA
    • Tamura M., and Tsujita S. A study on the number of principal components and sensitivity of fault detection using PCA. Computers and Chemical Engineering 31 (2006) 1035-1046
    • (2006) Computers and Chemical Engineering , vol.31 , pp. 1035-1046
    • Tamura, M.1    Tsujita, S.2
  • 30
    • 0033652903 scopus 로고    scopus 로고
    • Wavelet-PLS regression models for both exploratory data analysis and process monitoring
    • Teppola P., and Minkkinen P. Wavelet-PLS regression models for both exploratory data analysis and process monitoring. Journal of Chemometrics 14 (2000) 383-399
    • (2000) Journal of Chemometrics , vol.14 , pp. 383-399
    • Teppola, P.1    Minkkinen, P.2
  • 32
  • 34
    • 0035427805 scopus 로고    scopus 로고
    • Fault diagnosis with multivariate statistical models part I: using steady state fault signatures
    • Yoon S., and MacGregor J.F. Fault diagnosis with multivariate statistical models part I: using steady state fault signatures. Journal of Process Control 11 (2001) 387-400
    • (2001) Journal of Process Control , vol.11 , pp. 387-400
    • Yoon, S.1    MacGregor, J.F.2
  • 35
    • 8544283059 scopus 로고    scopus 로고
    • Principal-component analysis of multiscale data for process monitoring and fault diagnosis
    • Yoon S., and MacGregor J.F. Principal-component analysis of multiscale data for process monitoring and fault diagnosis. A.I.Ch.E. Journal 50 11 (2004) 2891-2903
    • (2004) A.I.Ch.E. Journal , vol.50 , Issue.11 , pp. 2891-2903
    • Yoon, S.1    MacGregor, J.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.