메뉴 건너뛰기




Volumn 49, Issue 22, 2010, Pages 11832-11836

Kernel generalization of PPCA for nonlinear probabilistic monitoring

Author keywords

[No Author keywords available]

Indexed keywords

KERNEL METHODS; KERNEL PCA; MONITORING APPROACH; MONITORING METHODS; MONITORING PERFORMANCE; NEW APPROACHES; NON-LINEAR RELATIONSHIPS; NONLINEAR PROCESS; PROBABILISTIC PRINCIPAL COMPONENT ANALYSIS; PROCESS VARIABLES; TENNESSEE EASTMAN;

EID: 78449282926     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie100852s     Document Type: Article
Times cited : (35)

References (22)
  • 1
    • 0038198780 scopus 로고    scopus 로고
    • Recursive partial least squares algorithms for monitoring complex industrial processes
    • Wang, X.; Kruger, U.; Lennox, B. Recursive partial least squares algorithms for monitoring complex industrial processes Control Eng. Pract. 2003, 11, 613-632
    • (2003) Control Eng. Pract. , vol.11 , pp. 613-632
    • Wang, X.1    Kruger, U.2    Lennox, B.3
  • 2
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • Qin, S. J. Statistical process monitoring: basics and beyond J. Chemom. 2003, 17, 480-502
    • (2003) J. Chemom. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 4
    • 22944436794 scopus 로고    scopus 로고
    • Process monitoring approach using fast moving window PCA
    • Wang, X.; Kruger, U.; Irwin, G. W. Process monitoring approach using fast moving window PCA Ind. Eng. Chem. Res. 2005, 44, 5691-5702
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 5691-5702
    • Wang, X.1    Kruger, U.2    Irwin, G.W.3
  • 5
    • 54949117106 scopus 로고    scopus 로고
    • Diagnosis of process faults in chemical systems using a local partial least squares approach
    • Kruger, U.; Dimitriadis, G. Diagnosis of process faults in chemical systems using a local partial least squares approach AIChE J. 2008, 54, 2581-2596
    • (2008) AIChE J. , vol.54 , pp. 2581-2596
    • Kruger, U.1    Dimitriadis, G.2
  • 6
    • 36749052831 scopus 로고    scopus 로고
    • Monitoring a Complex Refining Process Using Multivariate Statistics
    • AlGhazzawi, A.; Lennox, B. Monitoring a Complex Refining Process Using Multivariate Statistics Control Eng. Pract. 2008, 16, 294-307
    • (2008) Control Eng. Pract. , vol.16 , pp. 294-307
    • Alghazzawi, A.1    Lennox, B.2
  • 7
    • 60249095677 scopus 로고    scopus 로고
    • Probabilistic contribution analysis for statistical process monitoring: A missing variable approach
    • Chen, T.; Sun, Y. Probabilistic contribution analysis for statistical process monitoring: A missing variable approach Cont. Eng. Pract. 2009, 17, 469-477
    • (2009) Cont. Eng. Pract. , vol.17 , pp. 469-477
    • Chen, T.1    Sun, Y.2
  • 8
    • 0041530045 scopus 로고    scopus 로고
    • Process monitoring based on probabilistic PCA
    • Kim, D.; Lee, I. B. Process monitoring based on probabilistic PCA Chemom. Intell. Lab. Syst. 2003, 67, 109-123
    • (2003) Chemom. Intell. Lab. Syst. , vol.67 , pp. 109-123
    • Kim, D.1    Lee, I.B.2
  • 10
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • Lee, J. M.; Yoo, C. K.; Choi, S. K.; Vanrolleghem, P. A.; Lee, I. B. Nonlinear process monitoring using kernel principal component analysis Chem. Eng. Sci. 2004, 59, 223-234
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.M.1    Yoo, C.K.2    Choi, S.K.3    Vanrolleghem, P.A.4    Lee, I.B.5
  • 11
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel-PCA based monitoring approach for nonlinear processes
    • Ge, Z. Q.; Yang, C. J.; Song, Z. H. Improved kernel-PCA based monitoring approach for nonlinear processes Chem. Eng. Sci. 2009, 64, 2245-2255
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 2245-2255
    • Ge, Z.Q.1    Yang, C.J.2    Song, Z.H.3
  • 12
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
    • Zhang, Y. W. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM Chem. Eng. Sci. 2009, 64, 801-811
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 801-811
    • Zhang, Y.W.1
  • 13
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with Gaussian process latent variable models
    • Lawrence, N. D. Probabilistic non-linear principal component analysis with Gaussian process latent variable models J. Machine Learn. Res. 2005, 6, 1783-1816
    • (2005) J. Machine Learn. Res. , vol.6 , pp. 1783-1816
    • Lawrence, N.D.1
  • 15
    • 33750340954 scopus 로고    scopus 로고
    • Advanced Probabilistic Models for Clustering and Projection
    • Ludwig-Maximilians Universität Munchen, Munich, Germany.
    • Yu, S. P. Advanced Probabilistic Models for Clustering and Projection. Ph.D dissertation, Ludwig-Maximilians Universität Munchen, Munich, Germany, 2006.
    • (2006) Ph.D Dissertation
    • Yu, S.P.1
  • 16
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal component analysis
    • Tipping, M. E.; Bishop, C. M. Probabilistic principal component analysis J. R. Stat. Soc. 1999, 61, 611-622
    • (1999) J. R. Stat. Soc. , vol.61 , pp. 611-622
    • Tipping, M.E.1    Bishop, C.M.2
  • 18
    • 0037084628 scopus 로고    scopus 로고
    • Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem
    • Kano, M.; Nagao, K.; Hasebe, H.; Hashimoto, I.; Ohno, H.; Strauss, R.; Bakshi, B. R. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem Comput. Chem. Eng. 2002, 26, 161-174
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 161-174
    • Kano, M.1    Nagao, K.2    Hasebe, H.3    Hashimoto, I.4    Ohno, H.5    Strauss, R.6    Bakshi, B.R.7
  • 19
    • 33645389475 scopus 로고    scopus 로고
    • Evaluation of a pattern matching method for the Tennessee Eastman challenge process
    • Singhai, A.; Seborg, D. E. Evaluation of a pattern matching method for the Tennessee Eastman challenge process J. Process Control 2006, 16, 601-613
    • (2006) J. Process Control , vol.16 , pp. 601-613
    • Singhai, A.1    Seborg, D.E.2
  • 20
    • 49249127452 scopus 로고    scopus 로고
    • Robust Online Monitoring for Multimode Processes Based on Nonlinear External Analysis
    • Ge, Z. Q.; Yang, C. J.; Song, Z. H.; Wang, H. Q. Robust Online Monitoring for Multimode Processes Based on Nonlinear External Analysis Ind. Eng. Chem. Res. 2008, 47, 4775-4783
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 4775-4783
    • Ge, Z.Q.1    Yang, C.J.2    Song, Z.H.3    Wang, H.Q.4
  • 21
    • 77957599856 scopus 로고    scopus 로고
    • Total projection to latent structures for process monitoring
    • Zhou, D. H.; Li, G.; Qin, S. J. Total projection to latent structures for process monitoring AIChE J. 2010, 56, 168-178
    • (2010) AIChE J. , vol.56 , pp. 168-178
    • Zhou, D.H.1    Li, G.2    Qin, S.J.3
  • 22
    • 27844491086 scopus 로고    scopus 로고
    • Introduction of a nonlinearity measure for principal component models
    • Kruger, U.; Antory, D.; Hahn, J.; Irwin, G. W.; McCullough, G. Introduction of a nonlinearity measure for principal component models Comput. Chem. Eng. 2005, 29, 2355-2362
    • (2005) Comput. Chem. Eng. , vol.29 , pp. 2355-2362
    • Kruger, U.1    Antory, D.2    Hahn, J.3    Irwin, G.W.4    McCullough, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.