메뉴 건너뛰기




Volumn 59, Issue 4, 2011, Pages 1553-1568

Time varying dynamic Bayesian network for nonstationary events modeling and online inference

Author keywords

Bayesian networks; event recognition; particle filters; time varying

Indexed keywords

BAYESIAN FRAMEWORKS; DATA SEQUENCES; DATA VALUES; EVENT RECOGNITION; GENERAL MODEL; JOINT SPACE; MULTINOMIALS; NETWORK STATE; NETWORK STRUCTURES; NON-STATIONARY MODEL; NONSTATIONARY; NUMERICAL PARAMETERS; ON-LINE NETWORK; PARTICLE FILTERING; PARTICLE FILTERS; SYNTHETIC DATA; TIME VARYING; TIME-VARYING DYNAMICS; TIME-VARYING MODELS; VIDEO SEQUENCES;

EID: 79952665170     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2010.2103071     Document Type: Article
Times cited : (54)

References (44)
  • 1
    • 0013288412 scopus 로고    scopus 로고
    • Dynamic Bayesian networks: Representation inference and learning
    • Ph.D. dissertation Berkeley Jul
    • K. Murphy, "Dynamic Bayesian networks: Representation, inference and learning," Ph.D. dissertation, Comput. Sci. Div., Univ. Calif., Berkeley, Jul. 2002.
    • (2002) Comput. Sci. Div. Univ. Calif.
    • Murphy, K.1
  • 2
    • 19344375247 scopus 로고    scopus 로고
    • Bayesian time-varying autoregressions: Theory methods and applications
    • R. Prado, G. Huerta, and M. West, "Bayesian time-varying autoregressions: Theory, methods and applications," Resenhas, vol. 4, pp. 405-422, 2001.
    • (2001) Resenhas , vol.4 , pp. 405-422
    • Prado, R.1    Huerta, G.2    West, M.3
  • 3
    • 33644917699 scopus 로고    scopus 로고
    • On recursive estimation for time varying autoregressive processes
    • DOI 10.1214/009053605000000624
    • E. Moulines, P. Priouret, and F. Roueff, "On recursive estimation for time varying autoregressive processes," Ann. Stat., vol. 33, no. 6, pp. 2610-2654, 2005. (Pubitemid 43384870)
    • (2005) Annals of Statistics , vol.33 , Issue.6 , pp. 2610-2654
    • Moulines, E.1    Priouret, P.2    Roueff, F.3
  • 4
    • 39049099078 scopus 로고    scopus 로고
    • Maximizing equity market sector predictability in a Bayesian time-varying parameter model
    • DOI 10.1016/j.csda.2007.09.030, PII S0167947307003593
    • L. D. Johnson and G. Sakoulis, "Maximizing equity market sector predictability in a bayesian time-varying parameter model," Computat. Stat. Data Anal., vol. 52, no. 6, pp. 3083-3106, 2008. (Pubitemid 351241288)
    • (2008) Computational Statistics and Data Analysis , vol.52 , Issue.6 , pp. 3083-3106
    • Johnson, L.D.1    Sakoulis, G.2
  • 5
    • 34250878960 scopus 로고    scopus 로고
    • Inferring time-varying network topologies from gene expression data
    • 2007
    • A. Rao, D. J. States, and J. D. Engel, "Inferring time-varying network topologies from gene expression data," EURASIP J. Bioinformat. Syst. Biol., vol. 2007, p. 12, 2007.
    • (2007) Eurasip J. Bioinformat. Syst. Biol. , pp. 12
    • Rao, A.1    States, D.J.2    Engel, J.D.3
  • 6
    • 0442309553 scopus 로고    scopus 로고
    • Evaluation and comparison of EEG traces: Latent structure in nonstationary time series
    • M. West, R. Prado, and A. D. Krystal, "Evaluation and comparison of EEG traces: Latent structure in nonstationary time series," J. Amer. Statist. Assoc., vol. 94, no. 446, pp. 375-387, 1999.
    • (1999) J. Amer. Statist. Assoc. , vol.94 , Issue.446 , pp. 375-387
    • West, M.1    Prado, R.2    Krystal, A.D.3
  • 7
    • 77951294377 scopus 로고    scopus 로고
    • Modeling non-gaussian time-varying vector autoregressive processes by particle filtering
    • D. Gencaga, E. E. Kuruoglu, and A. Ertuzun, "Modeling non-Gaussian time-varying vector autoregressive processes by particle filtering," Multidimens. Syst. Signal Process., vol. 21, no. 1, pp. 73-85, 2010.
    • (2010) Multidimens. Syst. Signal Process. , vol.21 , Issue.1 , pp. 73-85
    • Gencaga, D.1    Kuruoglu, E.E.2    Ertuzun, A.3
  • 9
    • 0034170950 scopus 로고    scopus 로고
    • Variational learning for switching state-space models
    • Apr. 1
    • Z. Ghahramani and G. E. Hinton, "Variational learning for switching state-space models," Neural Comput., vol. 12, no. 4, pp. 831-864, Apr. 1, 2000.
    • (2000) Neural. Comput. , vol.12 , Issue.4 , pp. 831-864
    • Ghahramani, Z.1    Hinton, G.E.2
  • 12
    • 39749137487 scopus 로고    scopus 로고
    • Learning and inferring motion patterns using parametric segmental switching linear dynamic systems
    • DOI 10.1007/s11263-007-0062-z, Special issue on Machine Learning for Vision, Guest Editors: William Freeman, Pietro Perona and Bernhard Scholkopf
    • S. M. Oh, J. M. Rehg, T. Balch, and F. Dellaert, "Learning and inferring motion patterns using parametric segmental switching linear dynamic systems," Int. J. Comput. Vis., vol. 77, pp. 103-124, 2008. (Pubitemid 351294739)
    • (2008) International Journal of Computer Vision , vol.77 , Issue.1-3 , pp. 103-124
    • Oh, S.M.1    Rehg, J.M.2    Balch, T.3    Dellaert, F.4
  • 13
    • 84858766922 scopus 로고    scopus 로고
    • Nonparametric bayesian learning of switching linear dynamical systems
    • E. Fox, E. Sudderth, M. Jordan, and A. Willsky, "Nonparametric bayesian learning of switching linear dynamical systems," Adv. Neural Inf. Process. Syst., vol. 21, pp. 457-464, 2009.
    • (2009) Adv. Neural Inf. Process. Syst. , vol.21 , pp. 457-464
    • Fox, E.1    Sudderth, E.2    Jordan, M.3    Willsky, A.4
  • 14
    • 70450207848 scopus 로고    scopus 로고
    • Locally time-invariant models of human activities using trajectories on the grassmannian
    • P. Turaga and R. Chellappa, "Locally time-invariant models of human activities using trajectories on the grassmannian," in Proc. IEEE Conf. Comput. Vision Pattern Recogn., 2009, pp. 2435-2441.
    • (2009) Proc. IEEE Conf. Comput. Vision Pattern Recogn. , pp. 2435-2441
    • Turaga, P.1    Chellappa, R.2
  • 15
    • 0038538420 scopus 로고    scopus 로고
    • Efficient particle filtering for jump markov systems application to time-varying autoregressions
    • Jul
    • C. Andrieu, M. Davy, and A. Doucet, "Efficient particle filtering for jump Markov systems. application to time-varying autoregressions," IEEE Trans. Signal Process., vol. 51, no. 7, pp. 1762-1770, Jul. 2003.
    • (2003) IEEE Trans. Signal Process. , vol.51 , Issue.7 , pp. 1762-1770
    • Andrieu, C.1    Davy, M.2    Doucet, A.3
  • 16
    • 34547991011 scopus 로고    scopus 로고
    • Modeling changing dependency structure in multivariate time series
    • X. Xuan and K. Murphy, "Modeling changing dependency structure in multivariate time series," in Proc. 24th Int. Conf. Mach. Learn., 2007, pp. 1055-1062.
    • (2007) Proc. 24th Int. Conf. Mach. Learn. , pp. 1055-1062
    • Xuan, X.1    Murphy, K.2
  • 17
    • 33646687960 scopus 로고    scopus 로고
    • Exact and efficient Bayesian inference for multiple changepoint problems
    • DOI 10.1007/s11222-006-8450-8
    • P. Fearnhead, "Exact and efficient Bayesian inference for multiple changepoint problems," Stat. Comput., vol. 16, no. 2, pp. 203-213, Jun 2006. (Pubitemid 43742297)
    • (2006) Statistics and Computing , vol.16 , Issue.2 , pp. 203-213
    • Fearnhead, P.1
  • 18
    • 54049122306 scopus 로고    scopus 로고
    • Adaptive learning of dynamic bayesian networks with changing structures by detecting geometric structures of time series
    • K.Wang, J. Zhang, F. Shen, and L. Shi, "Adaptive learning of dynamic Bayesian networks with changing structures by detecting geometric structures of time series," Knowl. Inf. Syst., vol. 17, no. 1, pp. 121-133, 2008.
    • (2008) Knowl. Inf. Syst. , vol.17 , Issue.1 , pp. 121-133
    • Wang, K.1    Zhang, J.2    Shen, F.3    Shi, L.4
  • 21
    • 0036504268 scopus 로고    scopus 로고
    • Bayesian curve fitting using MCMC with applications to signal segmentation
    • DOI 10.1109/78.984776, PII S1053587X02021633
    • E. Punskaya, C. Andrieu, A. Doucet, and W. Fitzgerald, "Bayesian curve fitting using MCMC with applications to signal segmentation," IEEE Trans. Signal Process., vol. 50, no. 3, pp. 747-758, Mar. 2002. (Pubitemid 34295114)
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.3 , pp. 747-758
    • Punskaya, E.1    Andrieu, C.2    Doucet, A.3    Fitzgerald, W.J.4
  • 22
    • 52949107933 scopus 로고    scopus 로고
    • Adapting bayes network structures to non-stationary domains
    • S. H. Nielsen and T. D. Nielsen, "Adapting Bayes network structures to non-stationary domains," Int. J. Approx. Reason., vol. 49, no. 2, pp. 379-397, 2008.
    • (2008) Int. J. Approx. Reason. , vol.49 , Issue.2 , pp. 379-397
    • Nielsen, S.H.1    Nielsen, T.D.2
  • 23
    • 38049012105 scopus 로고    scopus 로고
    • A bayesian network approach to explaining time series with changing structure
    • A. Tucker and X. Liu, "A bayesian network approach to explaining time series with changing structure," Intell. Data Anal., vol. 8, no. 5, pp. 469-480, 2004.
    • (2004) Intell. Data Anal. , vol.8 , Issue.5 , pp. 469-480
    • Tucker, A.1    Liu, X.2
  • 26
    • 77956517638 scopus 로고    scopus 로고
    • Sparsistent learning of varyingcoefficient models with structural changes
    • M. Kolar, L. Song, and E. P. Xing, "Sparsistent learning of varyingcoefficient models with structural changes," Adv. Neural Inf. Process. Syst., vol. 22, pp. 1006-1014, 2009.
    • (2009) Adv. Neural Inf. Process. Syst. , vol.22 , pp. 1006-1014
    • Kolar, M.1    Song, L.2    Xing, E.P.3
  • 29
    • 0002370418 scopus 로고    scopus 로고
    • A Tutorial on Learning with bayesian networks
    • M Jordan Ed Cambridge MA: MIT Press
    • D. Heckerman, "A Tutorial on Learning with Bayesian Networks," in Learning in Graphical Models,M. Jordan, Ed. Cambridge, MA:MIT Press, 1999.
    • (1999) Learning in Graphical Models
    • Heckerman, D.1
  • 31
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • A.-L. Barabási and R. Albert, "Emergence of scaling in random networks," Science, vol. 286, pp. 509-512, 1999.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabási, A.-L.1    Albert, R.2
  • 33
    • 33947181359 scopus 로고    scopus 로고
    • Preferential deletion in dynamic models of web-like networks
    • DOI 10.1016/j.ipl.2006.12.009, PII S0020019006003632
    • N. Deo and A. Cami, "Preferential deletion in dynamic models of weblike networks," Inf. Process. Lett., vol. 102, pp. 156-162, 2007. (Pubitemid 46399703)
    • (2007) Information Processing Letters , vol.102 , Issue.4 , pp. 156-162
    • Deo, N.1    Cami, A.2
  • 34
    • 77956889087 scopus 로고
    • Reversible jump markov chain monte carlo computation and bbayesian model determination
    • Dec
    • P. J. Green, "Reversible jump Markov chain Monte Carlo computation and Bbayesian model determination," Biometrica, vol. 82, no. 4, pp. 711-732, Dec. 1995.
    • (1995) Biometrica , vol.82 , Issue.4 , pp. 711-732
    • Green, P.J.1
  • 35
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz, "Estimating the dimension of a model," Ann. Statist., vol. 6, no. 2, pp. 461-464, 1978.
    • (1978) Ann. Statist. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 36
    • 31844435430 scopus 로고    scopus 로고
    • Hierarchical Dirichlet model for document classification
    • Bonn Germany
    • S. Veeramachaneni, D. Sona, and P. Avesani, "Hierarchical Dirichlet model for document classification," in Proc. Int. Conf. Mach. Learn., Bonn, Germany, 2005, vol. 119, pp. 928-935.
    • (2005) Proc. Int. Conf. Mach. Learn. , vol.119 , pp. 928-935
    • Veeramachaneni, S.1    Sona, D.2    Avesani, P.3
  • 38
    • 0000987741 scopus 로고
    • Gaussian influence diagrams
    • R. D. Shachter and C. R. Kenley, "Gaussian influence diagrams," MNSC, vol. 35, no. 5, pp. 527-550, 1989.
    • (1989) MNSC , vol.35 , Issue.5 , pp. 527-550
    • Shachter, R.D.1    Kenley, C.R.2
  • 39
    • 0001460136 scopus 로고    scopus 로고
    • On sequential monte carlo sampling methods for bayesian filtering
    • A. Doucet, S. Godsill, and C. Andrieu, "On sequential monte carlo sampling methods for Bayesian filtering," Stat. Comput., vol. 10, pp. 197-208, 2000.
    • (2000) Stat. Comput. , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 40
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear non-gaussian bayesian tracking
    • Feb
    • M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, "A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking," IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174-189, Feb. 2002.
    • (2002) IEEE Trans. Signal Process , vol.50 , Issue.2 , pp. 174-189
    • Arulampalam, M.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 43
    • 77954789045 scopus 로고    scopus 로고
    • Interaction analysis with a bayesian trajectory model
    • May Jun
    • A. Dore and C. Regazzoni, "Interaction analysis with a Bayesian trajectory model," IEEE Intell. Syst., vol. 25, no. 3, pp. 32-40, May/Jun. 2010.
    • (2010) IEEE Intell. Syst. , vol.25 , Issue.3 , pp. 32-40
    • Dore, A.1    Regazzoni, C.2
  • 44
    • 79952666298 scopus 로고    scopus 로고
    • Context aware vision using image-based active recognition project
    • CAVIAR Online Available
    • "Context aware vision using image-based active recognition project," EC Funded Project/IST 2001 37540 2005, CAVIAR, [Online]. Available:
    • (2005) EC Funded Project IST 2001 37540


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.