메뉴 건너뛰기




Volumn 2, Issue , 2012, Pages 428-433

Adaptive soft sensor for online prediction based on moving window gaussian process regression

Author keywords

adaptive soft sensor; Gaussian Process Regression; Mutual Information; online prediction; process modeling

Indexed keywords

ADAPTIVE SOFT-SENSOR; GAUSSIAN PROCESS REGRESSION; MUTUAL INFORMATIONS; ONLINE PREDICTION; PROCESS MODELING;

EID: 84873603969     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLA.2012.160     Document Type: Conference Paper
Times cited : (12)

References (32)
  • 1
    • 0036397757 scopus 로고    scopus 로고
    • Intelligent 'control' applications in the process industries
    • T. J. McAvoy, "Intelligent 'Control' Applications in the process industries," Annual Reviews in Control, vol. 26, no. 1, pp. 75-86, 2002.
    • (2002) Annual Reviews in Control , vol.26 , Issue.1 , pp. 75-86
    • McAvoy, T.J.1
  • 3
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Apr
    • P. Kadlec, B. Gabrys, and S. Strandt, "Data-driven Soft Sensors in the process industry," Computers & Chemical Engineering, vol. 33, no. 4, pp. 795-814, Apr. 2009.
    • (2009) Computers & Chemical Engineering , vol.33 , Issue.4 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 4
    • 33847162850 scopus 로고    scopus 로고
    • A systematic approach for soft sensor development
    • DOI 10.1016/j.compchemeng.2006.05.030, PII S0098135406001293, ESCAPE-15 Selected Papers from the 15th European Symposium on Computer Aided Process Engineering held in Barcelona, Spain, May 29-June 1, 2005
    • B. Lin, B. Recke, J. K. H. Knudsen, and S. B. Jorgensen, "A systematic approach for soft sensor development," Computers & Chemical Engineering, vol. 31, no. 5-6, pp. 419-425, 2007. (Pubitemid 46282062)
    • (2007) Computers and Chemical Engineering , vol.31 , Issue.5-6 , pp. 419-425
    • Lin, B.1    Recke, B.2    Knudsen, J.K.H.3    Jorgensen, S.B.4
  • 7
    • 11144284581 scopus 로고    scopus 로고
    • Soft sensors for product quality monitoring in debutanizer distillation columns
    • DOI 10.1016/j.conengprac.2004.04.013, PII S0967066104000899
    • L. Fortuna, S. Graziani, and M. Xibilia, "Soft sensors for product quality monitoring in debutanizer distillation columns," Control Engineering Practice, vol. 13, no. 4, pp. 499-508, Apr. 2005. (Pubitemid 40032159)
    • (2005) Control Engineering Practice , vol.13 , Issue.4 , pp. 499-508
    • Fortuna, L.1    Graziani, S.2    Xibilia, M.G.3
  • 9
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • DOI 10.1016/j.compchemeng.2003.11.004, PII S0098135403003107
    • W. Yan, H. Shao, and X. Wang, "Soft sensing modeling based on support vector machine and Bayesian model selection," Computers & Chemical Engineering, vol. 28, no. 8, pp. 1489-1498, 2004. (Pubitemid 38609097)
    • (2004) Computers and Chemical Engineering , vol.28 , Issue.8 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.3
  • 10
    • 0003288488 scopus 로고    scopus 로고
    • Neural networks for intelligent sensors and control-practical issues and some solutions
    • S. J. Qin, "Neural networks for intelligent sensors and control-practical issues and some solutions," Neural Systems for Control, pp. 213-234, 1997.
    • (1997) Neural Systems for Control , pp. 213-234
    • Qin, S.J.1
  • 11
    • 34147222905 scopus 로고    scopus 로고
    • On-line soft sensor for polyethylene process with multiple production grades
    • DOI 10.1016/j.conengprac.2005.12.005, PII S096706610600013X
    • J. Liu, "On-line soft sensor for polyethylene process with multiple production grades," Control Engineering Practice, vol. 15, no. 7, pp. 769-778, Jul. 2007. (Pubitemid 46577935)
    • (2007) Control Engineering Practice , vol.15 , Issue.7 , pp. 769-778
    • Liu, J.1
  • 12
    • 84857548668 scopus 로고    scopus 로고
    • Methods for plant data-based process modeling in soft-sensor development
    • D. Sliškovi, R. Grbi, and Ž. Hocenski, "Methods for Plant Data-Based Process Modeling in Soft-Sensor Development," Automatika, vol. 52, no. 4, pp. 306-318, 2011.
    • (2011) Automatika , vol.52 , Issue.4 , pp. 306-318
    • Sliškovi, D.1    Grbi, R.2    Hocenski, Ž.3
  • 13
    • 77956406437 scopus 로고    scopus 로고
    • Nonlinear soft sensor development based on relevance vector machine
    • Sep
    • Z. Ge and Z. Song, "Nonlinear Soft Sensor Development Based on Relevance Vector Machine," Industrial & Engineering Chemistry Research, vol. 49, no. 18, pp. 8685-8693, Sep. 2010.
    • (2010) Industrial & Engineering Chemistry Research , vol.49 , Issue.18 , pp. 8685-8693
    • Ge, Z.1    Song, Z.2
  • 14
    • 78650953042 scopus 로고    scopus 로고
    • Mixture probabilistic pcr model for soft sensing of multimode processes
    • Jan
    • Z. Ge, F. Gao, and Z. Song, "Mixture probabilistic PCR model for soft sensing of multimode processes," Chemometrics and Intelligent Laboratory Systems, vol. 105, no. 1, pp. 91-105, Jan. 2011.
    • (2011) Chemometrics and Intelligent Laboratory Systems , vol.105 , Issue.1 , pp. 91-105
    • Ge, Z.1    Gao, F.2    Song, Z.3
  • 16
    • 79954505385 scopus 로고    scopus 로고
    • Quality prediction for polypropylene production process based on clgpr model
    • May
    • Z. Ge, T. Chen, and Z. Song, "Quality prediction for polypropylene production process based on CLGPR model," Control Engineering Practice, vol. 19, no. 5, pp. 423-432, May 2011.
    • (2011) Control Engineering Practice , vol.19 , Issue.5 , pp. 423-432
    • Ge, Z.1    Chen, T.2    Song, Z.3
  • 17
    • 52949129443 scopus 로고    scopus 로고
    • Biomass estimation in batch biotechnological processes by bayesian gaussian process regression
    • Dec
    • F. di Sciascio and A. N. Amicarelli, "Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression," Computers & Chemical Engineering, vol. 32, no. 12, pp. 3264-3273, Dec. 2008.
    • (2008) Computers & Chemical Engineering , vol.32 , Issue.12 , pp. 3264-3273
    • Di Sciascio, F.1    Amicarelli, A.N.2
  • 18
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Jan
    • P. Kadlec, R. Grbi, and B. Gabrys, "Review of adaptation mechanisms for data-driven soft sensors," Computers & Chemical Engineering, vol. 35, no. 1, pp. 1-24, Jan. 2011.
    • (2011) Computers & Chemical Engineering , vol.35 , Issue.1 , pp. 1-24
    • Kadlec, P.1    Grbi, R.2    Gabrys, B.3
  • 20
    • 32944462016 scopus 로고    scopus 로고
    • Mutual information for the selection of relevant variables in spectrometric nonlinear modelling
    • DOI 10.1016/j.chemolab.2005.06.010, PII S0169743905000985
    • F. Rossi, A. Lendasse, D. François, V. Wertz, and M. Verleysen, "Mutual information for the selection of relevant variables in spectrometric nonlinear modelling," Chemometrics and Intelligent Laboratory Systems, vol. 80, no. 2, pp. 215-226, Feb. 2006. (Pubitemid 43259500)
    • (2006) Chemometrics and Intelligent Laboratory Systems , vol.80 , Issue.2 , pp. 215-226
    • Rossi, F.1    Lendasse, A.2    Francois, D.3    Wertz, V.4    Verleysen, M.5
  • 23
    • 77954659382 scopus 로고    scopus 로고
    • Adaptive process monitoring using efficient recursive pca and moving window pca algorithms
    • Jul
    • J. C. Jeng, "Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms," Journal of the Taiwan Institute of Chemical Engineers, vol. 41, no. 4, pp. 475-481, Jul. 2010.
    • (2010) Journal of the Taiwan Institute of Chemical Engineers , vol.41 , Issue.4 , pp. 475-481
    • Jeng, J.C.1
  • 24
    • 0031168001 scopus 로고    scopus 로고
    • Recursive exponentially weighted PLS and its applications to adaptive control and prediction
    • PII S0959152496000124
    • B. S. Dayal and J. F. MacGregor, "Recursive exponentially weighted PLS and its applications to adaptive control and prediction," Journal of Process Control, vol. 7, no. 3, pp. 169-179, 1997. (Pubitemid 127372162)
    • (1997) Journal of Process Control , vol.7 , Issue.3 , pp. 169-179
    • Dayal, B.S.1    MacGregor, J.F.2
  • 26
    • 27144556425 scopus 로고    scopus 로고
    • Incremental online learning in high dimensions
    • DOI 10.1162/089976605774320557
    • S. Vijayakumar, A. D'Souza, and S. Schaal, "Incremental online learning in high dimensions.," Neural computation, vol. 17, no. 12, pp. 2602-34, Dec. 2005. (Pubitemid 41505186)
    • (2005) Neural Computation , vol.17 , Issue.12 , pp. 2602-2634
    • Vijayakumar, S.1    D'Souza, A.2    Schaal, S.3
  • 27
    • 68049143320 scopus 로고    scopus 로고
    • Softsensor development using correlation-based just-in-time modeling
    • K. Fujiwara, M. Kano, S. Hasebe, and A. Takinami, "Softsensor development using correlation-based just-in-time modeling," AIChE Journal, vol. 55, no. 7, pp. 1754-1765, 2009.
    • (2009) AIChE Journal , vol.55 , Issue.7 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 30
    • 3543096272 scopus 로고    scopus 로고
    • The kernel recursive least-squares algorithm," signal processing
    • Aug
    • Y. Engel, S. Mannor, and R. Meir, "The kernel recursive least-squares algorithm," Signal Processing, IEEE Transactions on, vol. 52, no. 8, pp. 2275-2285, Aug. 2004.
    • (2004) IEEE Transactions on , vol.52 , Issue.8 , pp. 2275-2285
    • Engel, Y.1    Mannor, S.2    Meir, R.3
  • 31
    • 85087192721 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat, "Learning in the presence of concept drift and hidden contexts," Machine learning, vol. 101, 1996.
    • Machine Learning , vol.101 , pp. 1996
    • Widmer, G.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.