메뉴 건너뛰기




Volumn 24, Issue 11, 2009, Pages 1094-1114

A Levenberg-Marquardt learning applied for recurrent neural identification and control of a wastewater treatment bioprocess

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE TRAJECTORY; ESTIMATED STATE; INDIRECT ADAPTIVE CONTROL; LEVENBERG-MARQUARDT; MEAN SQUARED ERROR; NEURAL IDENTIFICATION; NOISE FILTERING; NONLINEAR PLANT; PLANT OUTPUT; REFERENCE-TRACKING; SLIDING MODE CONTROLLER; SYSTEMS IDENTIFICATION; WASTEWATER TREATMENT BIOPROCESS;

EID: 70349592179     PISSN: 08848173     EISSN: 1098111X     Source Type: Journal    
DOI: 10.1002/int.20377     Document Type: Article
Times cited : (37)

References (31)
  • 1
    • 13844296578 scopus 로고    scopus 로고
    • Baruch IS, Georgieva P, Barrera-Cortes J, Feyo de Azevedo S. Adaptive recurrent neural network control of biological wastewater treatment. Int J Intell Syst 2005;202:173-194
    • (Pubitemid 40245365) Baruch IS, Georgieva P, Barrera-Cortes J, Feyo de Azevedo S. Adaptive recurrent neural network control of biological wastewater treatment. Int J Intell Syst 2005;20(2):173-194.
  • 3
    • 0026748143 scopus 로고
    • Application of neural networks to water and wastewater treatment plant operation
    • Boger ZI. Application of neural networks to water and wastewater treatment plant operation. ISA Trans 1992; 31 (1): 25-33.
    • (1992) ISA Trans. , vol.31 , Issue.1 , pp. 25-33
    • Boger, Z.I.1
  • 4
    • 0029322568 scopus 로고
    • Comparison oflinear, nonlinear and neural-network-based adaptive controllers for a class of fed-batch fermentation processes
    • Boskovic JD, Narendra KS. Comparison oflinear, nonlinear and neural-network-based adaptive controllers for a class of fed-batch fermentation processes. Automatica 1995; 31: 817-840.
    • (1995) Automatica , vol.31 , pp. 817-840
    • Boskovic, J.D.1    Narendra, K.S.2
  • 5
    • 0031733749 scopus 로고    scopus 로고
    • Geeraerd AH, Herremans CH, Cenens C, Van Impe JF. Application of artificial neural networks as a nonlinear modular modelling technique to describe bacterial growth in chilled food products. Int J Food Microbiol 1998;44:49-68
    • (Pubitemid 28486942) Geeraerd AH, Herremans CH, Cenens C, Van Impe JF. Application of artificial neural networks as a nonlinear modular modelling technique to describe bacterial growth in chilled food products. Int J Food Microbiol 1998;44:49-68.
  • 6
    • 48649103098 scopus 로고    scopus 로고
    • Neural networks for prediction of wastewater treatment plant influent disturbances
    • pp
    • Kriger C, Tzoneva R. Neural networks for prediction of wastewater treatment plant influent disturbances. In: Proc of the AFRICON, 2007; pp 1-7.
    • (2007) Proc. of the AFRICON , pp. 1-7
    • Kriger, C.1    Tzoneva, R.2
  • 9
    • 0025399567 scopus 로고
    • Identification and control of dynamic systems using neural networks
    • Narendra KS, Parthasarathy K. Identification and control of dynamic systems using neural networks. IEEE Trans Neural Networks 1990; 1 (1): 4-27.
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 10
    • 0026868901 scopus 로고    scopus 로고
    • Su Hong-Te, McAvoy ThJ, Werbos P. Long-term predictions of chemical processes using recurrent neural networks: a parallel training approach. Ind Eng Chem Res 1992;31:1338-1352
    • (Pubitemid 23568583) Su Hong-Te, McAvoy ThJ, Werbos P. Long-term predictions of chemical processes using recurrent neural networks: a parallel training approach. Ind Eng Chem Res 1992;31:1338-1352.
  • 14
    • 13844296578 scopus 로고    scopus 로고
    • Hunt KJ, Sbarbaro D, Zbikowski R, Gawthrop PJ. Neural network for control systems-a survey. Automatica 1992;28 6:1083-1112
    • (Pubitemid 23587964) Hunt KJ, Sbarbaro D, Zbikowski R, Gawthrop PJ. Neural network for control systems-a survey. Automatica 1992;28 (6):1083-1112.
  • 15
    • 0003049327 scopus 로고
    • Neural net computing and intelligent control systems
    • Pao SA, Phillips SM, Sobajic DJ. Neural net computing and intelligent control systems. Int J Control 1992; 56: 263-289.
    • (1992) Int. J. Control , vol.56 , pp. 263-289
    • Pao, S.A.1    Phillips, S.M.2    Sobajic, D.J.3
  • 16
    • 84954943722 scopus 로고
    • Neural networks for nonlinear dynamics system modeling and identification
    • Chen S, Billings SA. Neural networks for nonlinear dynamics system modeling and identification. Int J Control 1992; 56: 319-346.
    • (1992) Int. J. Control , vol.56 , pp. 319-346
    • Chen, S.1    Billings, S.A.2
  • 17
    • 0033352722 scopus 로고    scopus 로고
    • Stable dynamic backpropagation learning in recurrent neural networks
    • Jin L, Gupta M. Stable dynamic backpropagation learning in recurrent neural networks. IEEE Trans Neural Networks 1999; 10: 1321-1334.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 1321-1334
    • Jin, L.1    Gupta, M.2
  • 20
    • 0001317823 scopus 로고    scopus 로고
    • Diagrammatic method for deriving and relating temporal neural networks algorithms
    • Wan E, Beaufays F. Diagrammatic method for deriving and relating temporal neural networks algorithms. Neural Comput 1996; 8: 182-201.
    • (1996) Neural Comput. , vol.8 , pp. 182-201
    • Wan, E.1    Beaufays, F.2
  • 21
    • 0036738759 scopus 로고    scopus 로고
    • Two highly efficient second-order algorithms for training feedforward networks
    • Ampazis BN, Perantonis SJ. Two highly efficient second-order algorithms for training feedforward networks. IEEE Trans Neural Networks 2002; 13 (5): 1064-1074.
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.5 , pp. 1064-1074
    • Ampazis, B.N.1    Perantonis, S.J.2
  • 23
    • 0141794666 scopus 로고    scopus 로고
    • Acceleration of Levenberg-Marquardt training of neural networks with variable decay rate
    • Vol, pp
    • Chen AT, Han D, Au FTK, Tham LG. Acceleration of Levenberg-Marquardt training of neural networks with variable decay rate. In: Proc of the Int Joint Conf on Neural Networks, Vol 3, 2003. pp 1873-1878.
    • (2003) Proc. of the Int. Joint Conf on Neural Networks , vol.3 , pp. 1873-1878
    • Chen, A.T.1    Han, D.2    Au, F.T.K.3    Tham, L.G.4
  • 24
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M, Menhaj M. Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Networks 1994; 5 (6).
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6
    • Hagan, M.1    Menhaj, M.2
  • 25
    • 33745925296 scopus 로고    scopus 로고
    • Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment?
    • pp
    • Lourakis MLA, Argyros AA. Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment? In: Proc of the 10th IEEE Int Conf on Computer Vision, 2005. pp 1526-1531.
    • (2005) Proc. of the 10th IEEE Int. Conf on Computer Vision , pp. 1526-1531
    • Lourakis, M.L.A.1    Argyros, A.A.2
  • 26
    • 0033716744 scopus 로고    scopus 로고
    • Efficient training of neural nets for nonlinear adaptive filtering using a recursive Levenberg-Marquardt algorithm
    • Ngia LS, Sjöberg J. Efficient training of neural nets for nonlinear adaptive filtering using a recursive Levenberg-Marquardt algorithm. IEEE Trans Signal Process 2000; 48: 1915-1927.
    • (2000) IEEE Trans. Signal Process , vol.48 , pp. 1915-1927
    • Ngia, L.S.1    Sjöberg, J.2
  • 27
    • 0032267997 scopus 로고    scopus 로고
    • Adaptive neural nets filter using a recursive Levenberg-Marquardt search direction
    • Ngia LS, Sjöberg J, Viberg M. Adaptive neural nets filter using a recursive Levenberg-Marquardt search direction. IEEE Signals Syst Comp 1998; 1: 697-701.
    • (1998) IEEE Signals Syst Comp , vol.1 , pp. 697-701
    • Ngia, L.S.1    Sjöberg, J.2    Viberg, M.3
  • 28
    • 84962795055 scopus 로고    scopus 로고
    • An advanced neural network topology and learning, applied for identification and control of a D. C. motor
    • Sgurev V, Jotsov V, editors. Varna, Bulgaria;, pp
    • Baruch IS, Flores JM, Nava F, Ramirez IR, Nenkova B. An advanced neural network topology and learning, applied for identification and control of a D. C. motor. In: Proc of the First Int IEEE Symp on Intelligent Systems. Sgurev V, Jotsov V, editors. Varna, Bulgaria; 2002; pp 289-295.
    • (2002) Proc. of the First Int. IEEE Symp on Intelligent Systems , pp. 289-295
    • Baruch, I.S.1    Flores, J.M.2    Nava, F.3    Ramirez, I.R.4    Nenkova, B.5
  • 29
    • 0035883107 scopus 로고    scopus 로고
    • Adaptive λ-tracking control of activated sludge processes
    • Georgieva P, Ilchmann A. Adaptive λ-tracking control of activated sludge processes. Int J Control 2001; 74 (12): 1247-1259.
    • (2001) Int. J. Control , vol.74 , Issue.12 , pp. 1247-1259
    • Georgieva, P.1    Ilchmann, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.