메뉴 건너뛰기




Volumn 11, Issue 3, 2011, Pages 3238-3246

Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system

Author keywords

Adaptive network based fuzzy inference system; Prediction; Principal component analysis; Wastewater treatment

Indexed keywords

ADAPTIVE NETWORK BASED FUZZY INFERENCE SYSTEM; CHEMICAL OXYGEN DEMAND REMOVALS; CONTROL PERFORMANCE; EFFLUENT QUALITY; FUZZY SUBTRACTIVE CLUSTERING; INPUT AND OUTPUTS; INPUT VARIABLES; LINEAR CORRELATION; MAXIMUM CORRELATION COEFFICIENT; MEAN ABSOLUTE PERCENTAGE ERROR; MINIMUM MEAN SQUARE ERRORS; NEURO-FUZZY MODELING; PAPER MILL; PAPER MILL WASTEWATER; PREDICTION; SUSPENDED SOLIDS; TREATING PROCESS; WASTEWATER TREATMENT PLANTS;

EID: 79951857690     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2010.12.026     Document Type: Article
Times cited : (102)

References (25)
  • 1
    • 47549094377 scopus 로고    scopus 로고
    • Studies on predicting the effluent treatment process with fuzzy neural network
    • J.Q. Wan, M.Z. Huang, and Y.W. Ma Studies on predicting the effluent treatment process with fuzzy neural network Transations of China Pulp and Paper 23 2008 96 99
    • (2008) Transations of China Pulp and Paper , vol.23 , pp. 96-99
    • Wan, J.Q.1    Huang, M.Z.2    Ma, Y.W.3
  • 2
    • 58349085319 scopus 로고    scopus 로고
    • Simulation of a paper mill wastewater treatment using a fuzzy neural network
    • M.Z. Huang, J.Q. Wan, Y.W. Ma, and Y. Wang Simulation of a paper mill wastewater treatment using a fuzzy neural network Expert Systems with Applications 36 2009 5064 5070
    • (2009) Expert Systems with Applications , vol.36 , pp. 5064-5070
    • Huang, M.Z.1    Wan, J.Q.2    Ma, Y.W.3    Wang, Y.4
  • 3
    • 0025010309 scopus 로고
    • Use of neural nets for dynamic modeling and control of chemical process systems
    • N. Bhat, and T.J. McAvoy Use of neural nets for dynamic modeling and control of chemical process systems Computers and Chemical Engineering 14 1990 573 583
    • (1990) Computers and Chemical Engineering , vol.14 , pp. 573-583
    • Bhat, N.1    McAvoy, T.J.2
  • 4
    • 34249743593 scopus 로고    scopus 로고
    • Monitoring of sequencing batch reactor for nitrogen and phosphorus removal using neural networks
    • DOI 10.1016/j.bej.2007.01.033, PII S1369703X07000563
    • S.H. Hong, M.W. Lee, D.S. Lee, and J.M. Park Monitoring of sequencing batch reactor for nitrogen and phosphorus removal using neural networks Biochemical Engineering Journal 35 2007 365 370 (Pubitemid 46830009)
    • (2007) Biochemical Engineering Journal , vol.35 , Issue.3 , pp. 365-370
    • Hong, S.H.1    Lee, M.W.2    Lee, D.S.3    Park, J.M.4
  • 5
    • 34548505256 scopus 로고    scopus 로고
    • An approach based on neural networks for estimation and generalization of crossflow filtration processes
    • DOI 10.1016/j.asoc.2007.03.008, PII S1568494607000440
    • I.N. da Silva, and R.A. Flauzino An approach based on neural networks for estimation and generalization of crossflow filtration processes Applied Soft Computing 8 2008 590 598 (Pubitemid 47374590)
    • (2008) Applied Soft Computing Journal , vol.8 , Issue.1 , pp. 590-598
    • Da Silva, I.N.1    Flauzino, R.A.2
  • 8
    • 0034746017 scopus 로고    scopus 로고
    • Chlorcast: A methodology for developing decision-making tools for chlorine disinfection control
    • J.B. Serodes, M.J. Rodriguez, and A. Ponton Chlorcast: a methodology for developing decision-making tools for chlorine disinfection control Environmental Modelling and Software 16 2001 53 62
    • (2001) Environmental Modelling and Software , vol.16 , pp. 53-62
    • Serodes, J.B.1    Rodriguez, M.J.2    Ponton, A.3
  • 9
    • 0035988097 scopus 로고    scopus 로고
    • Advanced controlling of anaerobic digestion by means of hierarchical neural networks
    • DOI 10.1016/S0043-1354(01)00487-0, PII S0043135401004870
    • P. Holubar, L. Zani, M. Hager, W. Froschl, Z. Radak, and R. Braun Advanced controlling of anaerobic digestion by means of hierarchical neural networks Water Research 36 2002 2582 2588 (Pubitemid 34578131)
    • (2002) Water Research , vol.36 , Issue.10 , pp. 2582-2588
    • Holubar, P.1    Zani, L.2    Hager, M.3    Froschl, W.4    Radak, Z.5    Braun, R.6
  • 11
    • 67349175728 scopus 로고    scopus 로고
    • Control rules of aeration in a submerged biofilm wastewater treatment process using fuzzy neural networks
    • M.Z. Huang, J.Q. Wan, Y.W. Ma, Y. Wang, W.J. Li, and X.F. Sun Control rules of aeration in a submerged biofilm wastewater treatment process using fuzzy neural networks Expert Systems with Applications 36 2009 10428 10437
    • (2009) Expert Systems with Applications , vol.36 , pp. 10428-10437
    • Huang, M.Z.1    Wan, J.Q.2    Ma, Y.W.3    Wang, Y.4    Li, W.J.5    Sun, X.F.6
  • 12
    • 0035499548 scopus 로고    scopus 로고
    • Advanced hybrid fuzzy-neural controller for industrial wastewater treatment
    • DOI 10.1061/(ASCE)0733-9372(2001)127:11(1048)
    • W.C. Chen, N.B. Chang, and W.K. Shieh Advanced hybrid fuzzy-neural controller for industrial wastewater treatment Journal of Environmental Engineering 127 2001 1048 1059 (Pubitemid 33038446)
    • (2001) Journal of Environmental Engineering , vol.127 , Issue.11 , pp. 1048-1059
    • Chen, W.C.1    Chang, N.-B.2    Shieh, W.K.3
  • 13
    • 0034749693 scopus 로고    scopus 로고
    • Improving the efficiency of a wastewater treatment plant by fuzzy control and neural networks
    • M. Bongards Improving the efficiency of a wastewater treatment plant by fuzzy control and neural networks Water Science and Technology 3 2001 189 196 (Pubitemid 33026230)
    • (2001) Water Science and Technology , vol.43 , Issue.11 , pp. 189-196
    • Bongards, M.1
  • 14
    • 0034256936 scopus 로고    scopus 로고
    • A fast predicting neural fuzzy model for high-rate anaerobic wastewater treatment systems
    • DOI 10.1016/S0043-1354(00)00057-9, PII S0043135400000579
    • J.H. Tay, and X. Zhang A fast predicting neural fuzzy model for high rate anaerobic wastewater treatment systems Water Research 34 2000 2849 2860 (Pubitemid 30261444)
    • (2000) Water Research , vol.34 , Issue.11 , pp. 2849-2860
    • Tay, J.-H.1    Zhang, X.2
  • 15
    • 0030663898 scopus 로고    scopus 로고
    • Hybrid fuzzy neural network for diagnosis - Application to the anaerobic treatment of wine distillery wastewater in a fluidized bed reactor
    • DOI 10.1016/S0273-1223(97)00525-8, PII S0273122397005258
    • J.P. Steyer, D. Rolland, J.C. Bouvier, and R. Moletta Hybrid fuzzy neural network for diagnosis application to the anaerobic treatment of wine distillery wastewater in a fluidized bed reactor Water Science and Technology 36 1997 209 217 (Pubitemid 27519329)
    • (1997) Water Science and Technology , vol.36 , Issue.6-7 , pp. 209-217
    • Steyer, J.-P.1    Rolland, D.2    Bouvier, J.-C.3    Moletta, R.4
  • 16
    • 34548683431 scopus 로고    scopus 로고
    • Mining the fuzzy control rules of aeration in a submerged biofilm wastewater treatment process
    • J.C. Chen, and N.B. Chang Mining the fuzzy control rules of aeration in a submerged biofilm wastewater treatment process Engineering Applications of Artificial Intelligence 20 2007 959 969
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , pp. 959-969
    • Chen, J.C.1    Chang, N.B.2
  • 17
    • 0036209691 scopus 로고    scopus 로고
    • Adaptive multiscale principal components analysis for online monitoring of wastewater treatment
    • J. Lennox, and C. Rosen Adaptive multiscale principal components analysis for online monitoring of wastewater treatment Water Science and Technology 45 2002 227 235 (Pubitemid 34256544)
    • (2002) Water Science and Technology , vol.45 , Issue.4-5 , pp. 227-235
    • Lennox, J.1    Rosen, C.2
  • 19
    • 38049083865 scopus 로고    scopus 로고
    • Modeling carbon and nitrogen removal in an industrial wastewater treatment plant using an adaptive network-based fuzzy inference system
    • G. Civelekoglu, A. Perendeci, N.O. Yigit, and M. Kitis Modeling carbon and nitrogen removal in an industrial wastewater treatment plant using an adaptive network-based fuzzy inference system Clean 35 2007 617 625
    • (2007) Clean , vol.35 , pp. 617-625
    • Civelekoglu, G.1    Perendeci, A.2    Yigit, N.O.3    Kitis, M.4
  • 20
    • 0036204225 scopus 로고    scopus 로고
    • A framework for extreme-event control in wastewater treatment
    • C. Rosen, M. Larsson, U. Jeppsson, and Z. Yuan A framework for extreme-event control in wastewater treatment Water Science and Technology 45 2002 299 308 (Pubitemid 34256552)
    • (2002) Water Science and Technology , vol.45 , Issue.4-5 , pp. 299-308
    • Rosen, C.1    Larsson, M.2    Jeppson, U.3    Yuan, Z.4
  • 21
    • 0034847598 scopus 로고    scopus 로고
    • A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process
    • DOI 10.1016/S0043-1354(01)00134-8, PII S0043135401001348
    • D.J. Choi, and H. Park A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process Water Research 35 2001 3959 3967 (Pubitemid 32824096)
    • (2001) Water Research , vol.35 , Issue.16 , pp. 3959-3967
    • Choi, D.-J.1    Park, H.2
  • 22
    • 0141831911 scopus 로고    scopus 로고
    • Nonlinear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plants
    • DOI 10.1016/S0168-1656(03)00168-8
    • C.K. Yoo, P.A. Vanrolleghem, and I.B. Lee Nonlinear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plants Journal of Biotechnology 105 2003 135 163 (Pubitemid 37168052)
    • (2003) Journal of Biotechnology , vol.105 , Issue.1-2 , pp. 135-163
    • Yoo, C.K.1    Vanrolleghem, P.A.2    Lee, I.-B.3
  • 23
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi, and M. Sugeno Fuzzy identification of systems and its applications to modeling and control IEEE Transactions on Systems Man and Cybernetics 15 1985 116 132
    • (1985) IEEE Transactions on Systems Man and Cybernetics , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 24
    • 38649104096 scopus 로고    scopus 로고
    • Elhag, an adaptive neuro-fuzzy inference system for bridge risk assessment
    • Y.M. Wang, and M. Taha Elhag, an adaptive neuro-fuzzy inference system for bridge risk assessment Expert Systems with Applications 34 2008 3099 3106
    • (2008) Expert Systems with Applications , vol.34 , pp. 3099-3106
    • Wang, Y.M.1    Taha, M.2
  • 25
    • 0033377733 scopus 로고    scopus 로고
    • Neural fuzzy modeling of anaerobic biological wastewater treatment systems
    • DOI 10.1061/(ASCE)0733-9372(1999)125:12(1149)
    • J.H. Tay, and X. Zhang Neural fuzzy modeling of anaerobic biological wastewater treatment systems Journal of Environmental Engineering - ASCE 125 1999 1149 1159 (Pubitemid 30083258)
    • (1999) Journal of Environmental Engineering , vol.125 , Issue.12 , pp. 1149-1159
    • Tay, J.-H.1    Zhang, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.