메뉴 건너뛰기




Volumn 23, Issue 3, 1999, Pages 395-411

Non-linear projection to latent structures revisited: The quadratic PLS algorithm

Author keywords

Process modelling; Projection to latent structures (PLS); Quadratic PLS

Indexed keywords

APPROXIMATION THEORY; COMPUTER SIMULATION; FLUIDIZED BEDS; FUNCTIONS; MATHEMATICAL MODELS; PH; REGRESSION ANALYSIS; STATISTICAL PROCESS CONTROL;

EID: 0033611717     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0098-1354(98)00283-X     Document Type: Article
Times cited : (158)

References (24)
  • 1
    • 0000050514 scopus 로고    scopus 로고
    • INLR, Implicit non-linear latent variable regression
    • Berglund, A., & Wold, S. (1997). INLR, Implicit non-linear latent variable regression. J. Chemometrics, 11, 141-156.
    • (1997) J. Chemometrics , vol.11 , pp. 141-156
    • Berglund, A.1    Wold, S.2
  • 2
    • 0030196823 scopus 로고    scopus 로고
    • Comparison of adaptive methods for function estimation from samples
    • Cherkassky, V., & Gehring, D. (1996). Comparison of adaptive methods for function estimation from samples. IEEE Trans. Neural Networks, 7, 969-984.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 969-984
    • Cherkassky, V.1    Gehring, D.2
  • 3
    • 0013513311 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. SIAM J. Sci. Statist. Comput., 5, 175-191.
    • (1989) SIAM J. Sci. Statist. Comput. , vol.5 , pp. 175-191
    • Cybenko, G.1
  • 4
    • 84984291168 scopus 로고
    • Comments on the PLS Kernel algorithm
    • de Jong, S., & ter Braak, C. J. F. (1994). Comments on the PLS Kernel algorithm. J. Chemometrics, 8, 169-174.
    • (1994) J. Chemometrics , vol.8 , pp. 169-174
    • De Jong, S.1    Ter Braak, C.J.F.2
  • 6
    • 11144325691 scopus 로고
    • Partial least squares regression: A tutorial
    • Geladi, P., & Kowalski, B. R. (1986). Partial least squares regression: A tutorial. Anal. Chim. Acta, 185, 1-17.
    • (1986) Anal. Chim. Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 7
    • 0028498085 scopus 로고
    • Adaptive non-linear control of a pH neutralisation process
    • Henson, M. A., & Seborg, D. E. (1994). Adaptive non-linear control of a pH neutralisation process. IEEE Trans. Control Systems Technol., 3, 169-183.
    • (1994) IEEE Trans. Control Systems Technol. , vol.3 , pp. 169-183
    • Henson, M.A.1    Seborg, D.E.2
  • 9
    • 0000103519 scopus 로고
    • PLS regression methods
    • Höskuldsson, A., (1988). PLS regression methods. J. Chemometrics, 29, 409-412.
    • (1988) J. Chemometrics , vol.29 , pp. 409-412
    • Höskuldsson, A.1
  • 10
    • 0030826834 scopus 로고    scopus 로고
    • Operating regime based process modelling and identification
    • Johansen, T. A., & Foss, B. A. (1997). Operating regime based process modelling and identification. Comput. Chem. Engng, 21, 159-176.
    • (1997) Comput. Chem. Engng , vol.21 , pp. 159-176
    • Johansen, T.A.1    Foss, B.A.2
  • 11
    • 0343561206 scopus 로고    scopus 로고
    • Fuzzy predictive control of highly non-linear pH process
    • Kavšek-Biasizzo, K., Škrjanc, I., & Matko, D. (1997). Fuzzy predictive control of highly non-linear pH process. Comput. Chem. Engng, 21 (Suppl), S613-S618.
    • (1997) Comput. Chem. Engng , vol.21 , Issue.SUPPL.
    • Kavšek-Biasizzo, K.1    Škrjanc, I.2    Matko, D.3
  • 12
    • 0030783278 scopus 로고    scopus 로고
    • A neural linearising control scheme for non-linear chemical processes
    • Kim, S. J., Lee, M., Park, S., Lee, S. Y., & Park, C. H. (1997). A neural linearising control scheme for non-linear chemical processes. Comput. Chem. Engng, 21, 187-200.
    • (1997) Comput. Chem. Engng , vol.21 , pp. 187-200
    • Kim, S.J.1    Lee, M.2    Park, S.3    Lee, S.Y.4    Park, C.H.5
  • 13
    • 0026108818 scopus 로고
    • Multivariate statistical monitoring of process operating performance
    • Kresta, J. V., MacGregor, J. F., & Marlin, T. E. (1991). Multivariate statistical monitoring of process operating performance. Can. J. Chem. Engng, 69, 35-47.
    • (1991) Can. J. Chem. Engng , vol.69 , pp. 35-47
    • Kresta, J.V.1    MacGregor, J.F.2    Marlin, T.E.3
  • 15
    • 0002206675 scopus 로고
    • Multivariate statistical process control and property inference applied to low density polyethylene reactors
    • Toulouse, France, October 1991, Oxford: Pergamon Press
    • MacGregor, J. F., Skagerberg, B., & Kiparissides, C. (1991b). Multivariate statistical process control and property inference applied to low density polyethylene reactors. IFAC Symposium ADCHEM'91 (pp. 131-135). Toulouse, France, October 1991, Oxford: Pergamon Press.
    • (1991) IFAC Symposium ADCHEM'91 , pp. 131-135
    • MacGregor, J.F.1    Skagerberg, B.2    Kiparissides, C.3
  • 16
    • 0013550193 scopus 로고
    • Data description
    • T. Leonard, & C. F. Wu (Eds), G.E.P. Box. New York: Academic Press
    • Mallow, C. L. (1983). Data description. In T. Leonard, & C. F. Wu (Eds), Scientific Inference, Data Analysis, and Robustness, G.E.P. Box. New York: Academic Press.
    • (1983) Scientific Inference, Data Analysis, and Robustness
    • Mallow, C.L.1
  • 18
    • 0026360534 scopus 로고
    • Estimation of distillation composition from multiple temperature measurements using partial least squares regression
    • Mejdell, T., & Skogestad, S. (1991). Estimation of distillation composition from multiple temperature measurements using partial least squares regression. Ind. Engng Chem. Res., 30, 2543-2555.
    • (1991) Ind. Engng Chem. Res. , vol.30 , pp. 2543-2555
    • Mejdell, T.1    Skogestad, S.2
  • 19
    • 0026853320 scopus 로고
    • Non-linear PLS modelling using neural networks
    • Qin, S. J., & McAvoy, T. J. (1992). Non-linear PLS modelling using neural networks. Comput. Chem. Engng, 16, 379-391.
    • (1992) Comput. Chem. Engng , vol.16 , pp. 379-391
    • Qin, S.J.1    McAvoy, T.J.2
  • 21
    • 0003000612 scopus 로고
    • Non-linear estimation by iterative least squares procedures
    • F. David (Ed.). New York: Wiley
    • Wold, H. (1966). Non-linear estimation by iterative least squares procedures. In F. David (Ed.), Research Papers in Statistics, Festschrift for Jerzy Newman (P. 411). New York: Wiley.
    • (1966) Research Papers in Statistics, Festschrift for Jerzy Newman , pp. 411
    • Wold, H.1
  • 23
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of components in factor and principal component models
    • Wold, S. (1978). Cross-validatory estimation of the number of components in factor and principal component models. Technometrics, 20, 397-404.
    • (1978) Technometrics , vol.20 , pp. 397-404
    • Wold, S.1
  • 24
    • 0026578543 scopus 로고
    • Non-linear partial least squares modelling. II Spline inner function
    • Wold, S. (1992). Non-linear partial least squares modelling. II Spline inner function. Chemometrics Int. Lab. System, 14, 71-84.
    • (1992) Chemometrics Int. Lab. System , vol.14 , pp. 71-84
    • Wold, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.