메뉴 건너뛰기




Volumn 43, Issue 10, 2008, Pages 1107-1113

Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensors

Author keywords

Multivariate statistical process control; Neural network; Principal component analysis; Remote monitoring; Software sensor; Wastewater treatment plant

Indexed keywords

BIOLOGICAL WATER TREATMENT; CHEMICAL OXYGEN DEMAND; CONCURRENCY CONTROL; CONTROL THEORY; MONITORING; NEURAL NETWORKS; NITROGEN; NONMETALS; ORGANIC COMPOUNDS; PHOSPHORUS; PROCESS CONTROL; PROCESS ENGINEERING; PRODUCTION CONTROL; QUALITY CONTROL; REAL TIME SYSTEMS; REMOTE CONTROL; RURAL AREAS; SENSOR NETWORKS; SENSORS; SEWAGE PUMPING PLANTS; STATISTICAL METHODS; STATISTICAL PROCESS CONTROL; SURFACE TREATMENT; WASTEWATER RECLAMATION; WATER SUPPLY; WATER TREATMENT; WATER TREATMENT PLANTS;

EID: 50449095583     PISSN: 13595113     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.procbio.2008.06.002     Document Type: Article
Times cited : (65)

References (22)
  • 1
    • 50449086524 scopus 로고    scopus 로고
    • Lardon L, Punal A, Steyer J-P, Roca E, Lema J, Lambert S, Ratini P, Frattesi S, Bernard O. Specifications of modular internet-based remote supervision systems for wastewater treatment plants. In: Proceedings of the 15th biennial european conference on artificial intelligence, workshop 14: binding environmental sciences and artificial intelligence, France. 2002, 5.1.
    • Lardon L, Punal A, Steyer J-P, Roca E, Lema J, Lambert S, Ratini P, Frattesi S, Bernard O. Specifications of modular internet-based remote supervision systems for wastewater treatment plants. In: Proceedings of the 15th biennial european conference on artificial intelligence, workshop 14: binding environmental sciences and artificial intelligence, France. 2002, 5.1.
  • 2
    • 0037142398 scopus 로고    scopus 로고
    • Hybrid neural network modelling of a full-scale industrial wastewater treatment process
    • Lee D.S., Jeon C.O., Park J.M., and Chang K.S. Hybrid neural network modelling of a full-scale industrial wastewater treatment process. Biotechnol Bioeng 78 (2002) 670-682
    • (2002) Biotechnol Bioeng , vol.78 , pp. 670-682
    • Lee, D.S.1    Jeon, C.O.2    Park, J.M.3    Chang, K.S.4
  • 3
    • 0037457689 scopus 로고    scopus 로고
    • Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis
    • Lee D.S., and Vanrolleghem P.A. Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis. Biotechnol Bioeng 82 (2002) 489-497
    • (2002) Biotechnol Bioeng , vol.82 , pp. 489-497
    • Lee, D.S.1    Vanrolleghem, P.A.2
  • 4
    • 0030530039 scopus 로고    scopus 로고
    • The process chemometrics approach to process monitoring and fault detection
    • Wise B.M., and Gallagher N.B. The process chemometrics approach to process monitoring and fault detection. J Process Control 6 (1996) 329-348
    • (1996) J Process Control , vol.6 , pp. 329-348
    • Wise, B.M.1    Gallagher, N.B.2
  • 5
    • 33746777157 scopus 로고    scopus 로고
    • Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant
    • Lee D.S., Lee M.W., Woo S.H., Kim Y.-J., and Park J.M. Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant. Process Biochem 41 9 (2006) 2050-2057
    • (2006) Process Biochem , vol.41 , Issue.9 , pp. 2050-2057
    • Lee, D.S.1    Lee, M.W.2    Woo, S.H.3    Kim, Y.-J.4    Park, J.M.5
  • 6
    • 12344295457 scopus 로고    scopus 로고
    • Adaptive multiscale principal component analysis
    • Lee D.S., Vanrolleghem P.A., and Park J.M. Adaptive multiscale principal component analysis. J Biotechnol 116 (2005) 195-210
    • (2005) J Biotechnol , vol.116 , pp. 195-210
    • Lee, D.S.1    Vanrolleghem, P.A.2    Park, J.M.3
  • 8
    • 0037214850 scopus 로고    scopus 로고
    • On-line monitoring equipment for wastewater treatment processes: state of the art
    • Vanrolleghem P.A., and Lee D.S. On-line monitoring equipment for wastewater treatment processes: state of the art. Water Sci Technol 47 2 (2003) 1-34
    • (2003) Water Sci Technol , vol.47 , Issue.2 , pp. 1-34
    • Vanrolleghem, P.A.1    Lee, D.S.2
  • 9
    • 0025010309 scopus 로고
    • Use of neural nets for dynamic modeling and control of chemical process system
    • Bhat N., and McAvoy T.J. Use of neural nets for dynamic modeling and control of chemical process system. Comput Chem Eng 14 (1990) 573-583
    • (1990) Comput Chem Eng , vol.14 , pp. 573-583
    • Bhat, N.1    McAvoy, T.J.2
  • 10
    • 18944372441 scopus 로고    scopus 로고
    • Parallel hybrid modeling methods for a full-scale cokes wastewater treatment plant
    • Lee D.S., Vanrolleghem P.A., and Park J.M. Parallel hybrid modeling methods for a full-scale cokes wastewater treatment plant. J Biotechnol 115 (2005) 317-328
    • (2005) J Biotechnol , vol.115 , pp. 317-328
    • Lee, D.S.1    Vanrolleghem, P.A.2    Park, J.M.3
  • 11
    • 0028397699 scopus 로고
    • A prototype neural network supervised control system for Bacillus thuringiensis fermentations
    • Zhang Q., Reid J.F., Litchfield J.B., Ren J., and Chang S.-W. A prototype neural network supervised control system for Bacillus thuringiensis fermentations. Biotechnol Bioeng 43 (1994) 483-489
    • (1994) Biotechnol Bioeng , vol.43 , pp. 483-489
    • Zhang, Q.1    Reid, J.F.2    Litchfield, J.B.3    Ren, J.4    Chang, S.-W.5
  • 12
    • 38048999627 scopus 로고    scopus 로고
    • Predicting performance of grey and neural network in industrial effluent using online monitoring parameters
    • Pai T.Y., Chuang S.H., Ho H.H., Yu L.F., Su H.C., and Hu H.C. Predicting performance of grey and neural network in industrial effluent using online monitoring parameters. Process Biochem 43 2 (2008) 199-205
    • (2008) Process Biochem , vol.43 , Issue.2 , pp. 199-205
    • Pai, T.Y.1    Chuang, S.H.2    Ho, H.H.3    Yu, L.F.4    Su, H.C.5    Hu, H.C.6
  • 13
    • 22544446792 scopus 로고    scopus 로고
    • New tool for evaluation of performance of wastewater treatment plant: artificial neural network
    • Çinar O. New tool for evaluation of performance of wastewater treatment plant: artificial neural network. Process Biochem 40 9 (2005) 2980-2984
    • (2005) Process Biochem , vol.40 , Issue.9 , pp. 2980-2984
    • Çinar, O.1
  • 14
    • 0037509217 scopus 로고    scopus 로고
    • Neural network modeling for on-line estimation of nutrient dynamics in a sequentially-operated batch reactor
    • Lee D.S., and Park J.M. Neural network modeling for on-line estimation of nutrient dynamics in a sequentially-operated batch reactor. J Biotechnol 75 (1999) 229-239
    • (1999) J Biotechnol , vol.75 , pp. 229-239
    • Lee, D.S.1    Park, J.M.2
  • 15
    • 0030980424 scopus 로고    scopus 로고
    • Neural networks as 'software sensors' in enzyme production
    • Linko S., Luopa J., and Zhu Y.-H. Neural networks as 'software sensors' in enzyme production. J Biotechnol 52 (1997) 257-266
    • (1997) J Biotechnol , vol.52 , pp. 257-266
    • Linko, S.1    Luopa, J.2    Zhu, Y.-H.3
  • 16
    • 0026646385 scopus 로고
    • Enhancing bioprocess operability with generic software sensors
    • Montague G.A., Morris A.J., and Tham M.T. Enhancing bioprocess operability with generic software sensors. J Biotechnol 25 (1992) 183-201
    • (1992) J Biotechnol , vol.25 , pp. 183-201
    • Montague, G.A.1    Morris, A.J.2    Tham, M.T.3
  • 17
    • 50449091915 scopus 로고    scopus 로고
    • American Public Health Association/American Water Works Association/Water Environment Federation. Standard methods for the examination of water and wastewater. 19th ed. Washington, DC:APHA; 1995.
    • American Public Health Association/American Water Works Association/Water Environment Federation. Standard methods for the examination of water and wastewater. 19th ed. Washington, DC:APHA; 1995.
  • 19
    • 0034648471 scopus 로고    scopus 로고
    • Non-linear dynamic projection to latent structures modeling
    • Baffi G., Martin E.B., and Morris A.J. Non-linear dynamic projection to latent structures modeling. Chemom Intell Lab Syst 52 (2000) 5-22
    • (2000) Chemom Intell Lab Syst , vol.52 , pp. 5-22
    • Baffi, G.1    Martin, E.B.2    Morris, A.J.3
  • 20
    • 0030083996 scopus 로고    scopus 로고
    • Nonlinear FIR modeling via a neural net PLS approach
    • Qin S.J., and McAvoy T.J. Nonlinear FIR modeling via a neural net PLS approach. Comput Chem Eng 20 (1996) 147-159
    • (1996) Comput Chem Eng , vol.20 , pp. 147-159
    • Qin, S.J.1    McAvoy, T.J.2
  • 21
    • 0030269512 scopus 로고
    • Identification of faulty sensors using principal component analysis
    • Dunia D., Qin J., Edgar T.F., and McAvoy T.J. Identification of faulty sensors using principal component analysis. AIChE J 42 (1992) 2797-2812
    • (1992) AIChE J , vol.42 , pp. 2797-2812
    • Dunia, D.1    Qin, J.2    Edgar, T.F.3    McAvoy, T.J.4
  • 22
    • 0023526237 scopus 로고
    • Cross-validation in principal component analysis
    • Krzanowshi W.J. Cross-validation in principal component analysis. Biometrics 43 (1987) 575-584
    • (1987) Biometrics , vol.43 , pp. 575-584
    • Krzanowshi, W.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.