메뉴 건너뛰기




Volumn , Issue 7 MAY, 2013, Pages

Identifying effective connectivity parameters in simulated fMRI: A direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models

Author keywords

Effective connectivity; FMRI BOLD; Modeling and simulation; Parameter estimation

Indexed keywords

ACCURACY; ANALYTICAL PARAMETERS; ARTICLE; DYNAMIC CAUSAL MODEL; FUNCTIONAL MAGNETIC RESONANCE IMAGING; LINEAR DYNAMIC SYSTEM; MATHEMATICAL PHENOMENA; MULTIVARIATE ANALYSIS; MULTIVARIATE AUTOREGRESSIVE MODEL; SIMULATION; STOCHASTIC MODEL;

EID: 84879269843     PISSN: 16624548     EISSN: 1662453X     Source Type: Journal    
DOI: 10.3389/fnins.2013.00070     Document Type: Article
Times cited : (6)

References (105)
  • 1
    • 0032213559 scopus 로고    scopus 로고
    • The variability of human BOLD hemodynamic responses
    • Aguirre, G. K., Zarahn, E., and D'Esposito, M. (1998). The variability of human BOLD hemodynamic responses. Neuroimage 8, 360-369.
    • (1998) Neuroimage , vol.8 , pp. 360-369
    • Aguirre, G.K.1    Zarahn, E.2    D'Esposito, M.3
  • 2
    • 0028189162 scopus 로고
    • Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: a principal component approach to modeling brain function and disease
    • Alexander, G. E., and Moeller, J. R. (1994). Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: a principal component approach to modeling brain function and disease. Hum. Brain Mapp. 2, 79-94.
    • (1994) Hum. Brain Mapp. , vol.2 , pp. 79-94
    • Alexander, G.E.1    Moeller, J.R.2
  • 5
    • 33845270980 scopus 로고    scopus 로고
    • Expectation correction for smoothed inference in switching linear dynamical systems
    • Barber, D. (2006). Expectation correction for smoothed inference in switching linear dynamical systems. J. Mach. Learn. Res. 7, 2515-2540.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2515-2540
    • Barber, D.1
  • 6
    • 80053212789 scopus 로고    scopus 로고
    • Behaviour of Granger causality under filtering: theoretical invariance and practical application
    • Barnet, L. C., and Seth, A. K. (2011). Behaviour of Granger causality under filtering: theoretical invariance and practical application. J. Neurosci. Methods 201, 404-419.
    • (2011) J. Neurosci. Methods , vol.201 , pp. 404-419
    • Barnet, L.C.1    Seth, A.K.2
  • 9
    • 70349183430 scopus 로고    scopus 로고
    • Assessing neuronal networks: understanding Alzheimer's disease
    • Bokde, A. L. W., Ewers, M., and Hampel, H. (2009). Assessing neuronal networks: understanding Alzheimer's disease. Prog. Neurobiol. 89, 125-133.
    • (2009) Prog. Neurobiol. , vol.89 , pp. 125-133
    • Bokde, A.L.W.1    Ewers, M.2    Hampel, H.3
  • 10
    • 17544370819 scopus 로고    scopus 로고
    • The predictive value of changes in effective connectivity for human learning
    • Büchel, C., Coull, J. T., and Friston, K. J. (1999). The predictive value of changes in effective connectivity for human learning. Science 283, 1538-1541.
    • (1999) Science , vol.283 , pp. 1538-1541
    • Büchel, C.1    Coull, J.T.2    Friston, K.J.3
  • 11
    • 0035140147 scopus 로고    scopus 로고
    • Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains
    • Bullmore, E. T., Long, C., Suckling, J., Fadili, J., Calvert, G., Zelaya, F., et al. (2001). Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Hum. Brain Mapp. 12, 61-78.
    • (2001) Hum. Brain Mapp. , vol.12 , pp. 61-78
    • Bullmore, E.T.1    Long, C.2    Suckling, J.3    Fadili, J.4    Calvert, G.5    Zelaya, F.6
  • 13
    • 84862990555 scopus 로고    scopus 로고
    • Dynamic models of BOLD contrast
    • Buxton, R. B. (2012). Dynamic models of BOLD contrast. Neuroimage 62, 953-961.
    • (2012) Neuroimage , vol.62 , pp. 953-961
    • Buxton, R.B.1
  • 14
    • 0031809018 scopus 로고    scopus 로고
    • Dynamics of blood flow and oxygenation changes during brain activation: the Balloon model
    • Buxton, R. B., Wong, E. C., and Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes during brain activation: the Balloon model. Magn. Reson. Med. 39, 855-864.
    • (1998) Magn. Reson. Med. , vol.39 , pp. 855-864
    • Buxton, R.B.1    Wong, E.C.2    Frank, L.R.3
  • 16
    • 82955227445 scopus 로고    scopus 로고
    • Vector autoregression, structural equation modeling, and their synthesis in neuroimaging data analysis
    • Chen, G., Saad, Z. S., Glen, D. R., Hamilton, J. P., Thomason, M. E., Gotlib, I. H., et al. (2011). Vector autoregression, structural equation modeling, and their synthesis in neuroimaging data analysis. Comput. Biol. Med. 41, 1142-1155.
    • (2011) Comput. Biol. Med. , vol.41 , pp. 1142-1155
    • Chen, G.1    Saad, Z.S.2    Glen, D.R.3    Hamilton, J.P.4    Thomason, M.E.5    Gotlib, I.H.6
  • 17
    • 84966259249 scopus 로고
    • On the existence and uniqueness of the real logarithm of a matrix
    • Culver, W. J. (1966). On the existence and uniqueness of the real logarithm of a matrix. Proc. Am. Math. Soc. 17, 1146-1151.
    • (1966) Proc. Am. Math. Soc. , vol.17 , pp. 1146-1151
    • Culver, W.J.1
  • 19
    • 84883819822 scopus 로고    scopus 로고
    • Identifying neural drivers with functional MRI: an electrophysiological validation
    • doi:10.1371/journal.pbio.0060315
    • David, O., Guillemain, I., Saillet, S., Reyt, S., Deransart, C., Segebarth, C., and Depaulis, A. (2008). Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol. 6:e315. doi:10.1371/journal.pbio.0060315
    • (2008) PLoS Biol , vol.6
    • David, O.1    Guillemain, I.2    Saillet, S.3    Reyt, S.4    Deransart, C.5    Segebarth, C.6    Depaulis, A.7
  • 20
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. Ser. B 39, 1-38.
    • (1977) J. R. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 22
    • 0003144387 scopus 로고
    • A correspondence principle for simultaneous equation models
    • Fisher, F. (1970). A correspondence principle for simultaneous equation models. Econometrica 28, 79-92.
    • (1970) Econometrica , vol.28 , pp. 79-92
    • Fisher, F.1
  • 23
    • 85032752250 scopus 로고    scopus 로고
    • Bayesian nonparametric methods for learning Markov switching processes
    • Fox, E. B., Sudderth, E. B., Jordan, M. I., and Willsky, A. S. (2010). Bayesian nonparametric methods for learning Markov switching processes. IEEE Signal Process. Mag., 27, 43-54.
    • (2010) IEEE Signal Process. Mag. , vol.27 , pp. 43-54
    • Fox, E.B.1    Sudderth, E.B.2    Jordan, M.I.3    Willsky, A.S.4
  • 25
    • 0028190347 scopus 로고
    • Functional and effective connectivity in neuroimaging: a synthesis
    • Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2, 56-78.
    • (1994) Hum. Brain Mapp. , vol.2 , pp. 56-78
    • Friston, K.J.1
  • 27
  • 28
    • 0033778839 scopus 로고    scopus 로고
    • Nonlinear responses in fMRI: the balloon model Volterra kernels, and other hemodynamics
    • Friston, K. J., Mechelli, A., Turner, R., and Price, C. J. (2000). Nonlinear responses in fMRI: the balloon model Volterra kernels, and other hemodynamics. Neuroimage 4, 466-477.
    • (2000) Neuroimage , vol.4 , pp. 466-477
    • Friston, K.J.1    Mechelli, A.2    Turner, R.3    Price, C.J.4
  • 31
    • 0042178307 scopus 로고    scopus 로고
    • Multivariate autoregressive modeling of fMRI time series
    • Harrison, L., Penny, W. D., and Friston, K. (2003). Multivariate autoregressive modeling of fMRI time series. Neuroimage 19, 1477-1491.
    • (2003) Neuroimage , vol.19 , pp. 1477-1491
    • Harrison, L.1    Penny, W.D.2    Friston, K.3
  • 33
    • 84862978455 scopus 로고    scopus 로고
    • The continuing challenge of understanding and modeling hemodynamic variation in fMRI Neuroimage
    • Handwerker, D. A., Gonzalez-Castillo, J., D'Esposito, M., and Bandettini, P. A. (2012). The continuing challenge of understanding and modeling hemodynamic variation in fMRI Neuroimage 62, 1017-1023.
    • (2012) , vol.62 , pp. 1017-1023
    • Handwerker, D.A.1    Gonzalez-Castillo, J.2    D'Esposito, M.3    Bandettini, P.A.4
  • 34
    • 1842505168 scopus 로고    scopus 로고
    • Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses
    • Handwerker, D. A., Ollinger, J. M., and D'Esposito, M. (2004). Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21, 1639-1651.
    • (2004) Neuroimage , vol.21 , pp. 1639-1651
    • Handwerker, D.A.1    Ollinger, J.M.2    D'Esposito, M.3
  • 35
    • 79957479620 scopus 로고    scopus 로고
    • Dynamic modeling of neural responses in fMRI using cubature Kalman filtering
    • Havlicek, M., Friston, J. K., Jan, J., Brazdil, M., and Calhoun, V. D. (2011). Dynamic modeling of neural responses in fMRI using cubature Kalman filtering. Neuroimage 56, 2109-2128.
    • (2011) Neuroimage , vol.56 , pp. 2109-2128
    • Havlicek, M.1    Friston, J.K.2    Jan, J.3    Brazdil, M.4    Calhoun, V.D.5
  • 36
    • 77955306267 scopus 로고    scopus 로고
    • Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data
    • Havlicek, M., Jan, J., Brazdil, M., and Calhoun, V. D. (2010). Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data. Neuroimage 53, 65-77.
    • (2010) Neuroimage , vol.53 , pp. 65-77
    • Havlicek, M.1    Jan, J.2    Brazdil, M.3    Calhoun, V.D.4
  • 37
    • 0003807773 scopus 로고    scopus 로고
    • Upper Saddle River NJ:Prentice-Hall
    • Haykin, S. (2002). Adaptive Filter Theory. Upper Saddle River, NJ: Prentice-Hall.
    • (2002) Adaptive Filter Theory
    • Haykin, S.1
  • 38
    • 78751703809 scopus 로고    scopus 로고
    • eConnectome: a MATLAB toolbox for mapping and imaging of brain functional connectivity
    • He, B., Dai, Y., Astolfi, L., Babiloni, F., Yuan, H., and Yang, L. (2011). eConnectome: a MATLAB toolbox for mapping and imaging of brain functional connectivity. J. Neurosci. Methods 195, 261-269.
    • (2011) J. Neurosci. Methods , vol.195 , pp. 261-269
    • He, B.1    Dai, Y.2    Astolfi, L.3    Babiloni, F.4    Yuan, H.5    Yang, L.6
  • 40
    • 0042738946 scopus 로고    scopus 로고
    • The elusive concept of brain connectivity
    • Horwitz, B. (2003). The elusive concept of brain connectivity. Neuroimage 19, 466-470.
    • (2003) Neuroimage , vol.19 , pp. 466-470
    • Horwitz, B.1
  • 41
    • 0026709688 scopus 로고
    • Functional associations among posterior extrastriate brain region during object and spatial vision
    • Horwitz, B., Grady, C. I., Haxby, J. V., Ungerleider, L. G., Schapiro, M. B., Mishkin, M., et al. (1992). Functional associations among posterior extrastriate brain region during object and spatial vision. J. Cogn. Neurosci. 4, 311-322.
    • (1992) J. Cogn. Neurosci. , vol.4 , pp. 311-322
    • Horwitz, B.1    Grady, C.I.2    Haxby, J.V.3    Ungerleider, L.G.4    Schapiro, M.B.5    Mishkin, M.6
  • 42
    • 82755193656 scopus 로고    scopus 로고
    • Functional biomarkers for neurodegenerative disorders based on the network paradigm
    • Horwitz, B., and Rowe, J. B. (2011). Functional biomarkers for neurodegenerative disorders based on the network paradigm. Prog. Neurobiol. 95, 505-509.
    • (2011) Prog. Neurobiol. , vol.95 , pp. 505-509
    • Horwitz, B.1    Rowe, J.B.2
  • 45
    • 0002634803 scopus 로고
    • Dynamic linear models with Markov-switching
    • Kim, C. J. (1994). Dynamic linear models with Markov-switching. J. Econom. 60, 1-22.
    • (1994) J. Econom. , vol.60 , pp. 1-22
    • Kim, C.J.1
  • 48
    • 77950627896 scopus 로고    scopus 로고
    • Issues in sampling and estimating continuous-time models with stochastic disturbances
    • Ljung, L., and Wills, A. G. (2010). Issues in sampling and estimating continuous-time models with stochastic disturbances. Automatica 46, 925-931.
    • (2010) Automatica , vol.46 , pp. 925-931
    • Ljung, L.1    Wills, A.G.2
  • 49
    • 43049104255 scopus 로고    scopus 로고
    • What we can do and what we cannot do with fMRI
    • Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature 453, 869-878.
    • (2008) Nature , vol.453 , pp. 869-878
    • Logothetis, N.K.1
  • 50
    • 0035849892 scopus 로고    scopus 로고
    • Neurophysiological investigation of the basis of the fMRI signal
    • Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., and Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150-157.
    • (2001) Nature , vol.412 , pp. 150-157
    • Logothetis, N.K.1    Pauls, J.2    Augath, M.3    Trinath, T.4    Oeltermann, A.5
  • 51
    • 13544260698 scopus 로고    scopus 로고
    • On the nature of the BOLD fMRI contrast mechanism
    • Logothetis, N. K., and Pfeuffer, J. (2004). On the nature of the BOLD fMRI contrast mechanism. Magn. Reson. Imaging 22, 1517-1531.
    • (2004) Magn. Reson. Imaging , vol.22 , pp. 1517-1531
    • Logothetis, N.K.1    Pfeuffer, J.2
  • 53
    • 55349099460 scopus 로고    scopus 로고
    • Bayesian deconvolution of fMRI data using bilinear dynamical systems
    • Makni, S., Beckmann, C., Smith, S., and Woolrich, M. (2007). Bayesian deconvolution of fMRI data using bilinear dynamical systems. Neuroimage 42, 1381-1396.
    • (2007) Neuroimage , vol.42 , pp. 1381-1396
    • Makni, S.1    Beckmann, C.2    Smith, S.3    Woolrich, M.4
  • 55
    • 33748653805 scopus 로고    scopus 로고
    • Partial correlation for functional brain interactivity investigation in functional MRI
    • Marrelec, G., Krainik, A., Duffau, H., Pélégrini-Issac, M., Lehéricy, S., Doyon, J., et al. (2006). Partial correlation for functional brain interactivity investigation in functional MRI. Neuroimage 32, 228-237.
    • (2006) Neuroimage , vol.32 , pp. 228-237
    • Marrelec, G.1    Krainik, A.2    Duffau, H.3    Pélégrini-Issac, M.4    Lehéricy, S.5    Doyon, J.6
  • 57
    • 84861700205 scopus 로고    scopus 로고
    • Transient and sustained components of the sensorimotor BOLD response in fMRI
    • Marxen, M., Cassidy, R. J., Dawsom, T. L., Ross, B., and Graham, S. J. (2012). Transient and sustained components of the sensorimotor BOLD response in fMRI. Magn. Reson. Imaging 30, 837-847.
    • (2012) Magn. Reson. Imaging , vol.30 , pp. 837-847
    • Marxen, M.1    Cassidy, R.J.2    Dawsom, T.L.3    Ross, B.4    Graham, S.J.5
  • 58
    • 0033182750 scopus 로고    scopus 로고
    • Mapping cognition to the brain through neural interactions
    • McIntosh, A. R. (1999). Mapping cognition to the brain through neural interactions. Memory 7, 523-548.
    • (1999) Memory , vol.7 , pp. 523-548
    • McIntosh, A.R.1
  • 59
    • 0034324960 scopus 로고    scopus 로고
    • Towards a network theory of cognition
    • McIntosh, A. R. (2001). Towards a network theory of cognition. Neural Netw. 13, 861-876.
    • (2001) Neural Netw , vol.13 , pp. 861-876
    • McIntosh, A.R.1
  • 60
    • 0029941179 scopus 로고    scopus 로고
    • Spatial pattern analysis of functional brain images using partial least squares
    • McIntosh, A. R., Bookstein, F. L., Haxby, J. V., and Grady, C. L. (1996). Spatial pattern analysis of functional brain images using partial least squares. Neuroimage 3, 143-157.
    • (1996) Neuroimage , vol.3 , pp. 143-157
    • McIntosh, A.R.1    Bookstein, F.L.2    Haxby, J.V.3    Grady, C.L.4
  • 61
    • 0028312413 scopus 로고
    • Structural equation modeling and its application to network analysis in functional brain imaging
    • McIntosh, A. R., and Gonzalez-Lima, F. (1994). Structural equation modeling and its application to network analysis in functional brain imaging. Hum. Brain Mapp. 2, 2-22.
    • (1994) Hum. Brain Mapp. , vol.2 , pp. 2-22
    • McIntosh, A.R.1    Gonzalez-Lima, F.2
  • 63
    • 0036432301 scopus 로고    scopus 로고
    • Effective connectivity and intersubject variability: using a multisubject network to test differences and commonalities
    • Mechelli, A., Penny, W. D., Price, C. J., Gitelman, D. R., and Friston, K. J. (2002). Effective connectivity and intersubject variability: using a multisubject network to test differences and commonalities. Neuroimage 17, 1459-1469.
    • (2002) Neuroimage , vol.17 , pp. 1459-1469
    • Mechelli, A.1    Penny, W.D.2    Price, C.J.3    Gitelman, D.R.4    Friston, K.J.5
  • 65
    • 0025969753 scopus 로고
    • A regional covariance approach to the analysis of functional patterns in positron emission tomographic data
    • Moeller, J. R., and Strother, S. C. (1991). A regional covariance approach to the analysis of functional patterns in positron emission tomographic data. J. Cereb. Blood Flow Metab. 11, A121-A135.
    • (1991) J. Cereb. Blood Flow Metab. , vol.11
    • Moeller, J.R.1    Strother, S.C.2
  • 67
    • 0002537923 scopus 로고    scopus 로고
    • Estimation of parameters and eigenmodes of multivariate autoregressive models
    • Neumaier, A., and Schneider, T. (2001). Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Softw. 27, 27-57.
    • (2001) ACM Trans. Math. Softw. , vol.27 , pp. 27-57
    • Neumaier, A.1    Schneider, T.2
  • 68
    • 33645218351 scopus 로고    scopus 로고
    • A Bayesian approach to determining connectivity of the human brain
    • Patel, R. S., Bowman, F. D., and Rilling, J. K. (2006). A Bayesian approach to determining connectivity of the human brain. Hum. Brain Mapp. 27, 267-276.
    • (2006) Hum. Brain Mapp , vol.27 , pp. 267-276
    • Patel, R.S.1    Bowman, F.D.2    Rilling, J.K.3
  • 70
    • 7044235213 scopus 로고    scopus 로고
    • Modeling functional integration: a comparison of structural equation and dynamic causal models
    • Penny, W. D., Stephan, K. E., Mechelli, A., and Friston, K. J. (2004). Modeling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage 23(Suppl. 1), S264-S274.
    • (2004) Neuroimage , vol.23 , Issue.SUPPL. 1
    • Penny, W.D.1    Stephan, K.E.2    Mechelli, A.3    Friston, K.J.4
  • 71
    • 34547839743 scopus 로고    scopus 로고
    • Learning effective brain connectivity with dynamic Bayesian networks
    • Rajapakse, J. C., and Zhou, J. (2007). Learning effective brain connectivity with dynamic Bayesian networks. Neuroimage 37, 749-760.
    • (2007) Neuroimage , vol.37 , pp. 749-760
    • Rajapakse, J.C.1    Zhou, J.2
  • 72
    • 0023170776 scopus 로고
    • Algorithms for transformation of multivariable discrete-time models to continuous-time models
    • Raol, J. R., Puthenpura, S., and Sinha, N. K. (1987). Algorithms for transformation of multivariable discrete-time models to continuous-time models. Adv. Model. Simul. 6, 52-62.
    • (1987) Adv. Model. Simul. , vol.6 , pp. 52-62
    • Raol, J.R.1    Puthenpura, S.2    Sinha, N.K.3
  • 74
    • 1242316332 scopus 로고    scopus 로고
    • A state space model of the hemodynamic approach: nonlinear filtering of BOLD signals
    • Riera, J. J., Watanabe, J., Kazuki, I., Naoki, M., Aubert, E., Ozaki, T., et al. (2004). A state space model of the hemodynamic approach: nonlinear filtering of BOLD signals. Neuroimage 21, 547-567.
    • (2004) Neuroimage , vol.21 , pp. 547-567
    • Riera, J.J.1    Watanabe, J.2    Kazuki, I.3    Naoki, M.4    Aubert, E.5    Ozaki, T.6
  • 75
    • 14244259417 scopus 로고    scopus 로고
    • Mapping directed influence over the brain using Granger causality and fMRI
    • Roebroeck, A., Formisano, E., and Goebel, R. (2005). Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25, 230-242.
    • (2005) Neuroimage , vol.25 , pp. 230-242
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 76
    • 80051780742 scopus 로고    scopus 로고
    • The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution
    • Roebroeck, A., Formisano, E., and Goebel, R. (2011). The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. Neuroimage 58, 296-302.
    • (2011) Neuroimage , vol.58 , pp. 296-302
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 77
    • 79955526350 scopus 로고    scopus 로고
    • Connectivity analysis is essential to understand neurological disorders
    • doi: 10.3389/fnsys.2010.00144
    • Rowe, J. B. (2010). Connectivity analysis is essential to understand neurological disorders. Front. Syst. Neurosci. 4:144. doi: 10.3389/fnsys.2010.00144
    • (2010) Front. Syst. Neurosci. , vol.4
    • Rowe, J.B.1
  • 78
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear Gaussian models
    • Roweis, S., and Ghahramani, Z. (1999). A unifying review of linear Gaussian models. Neural Comput. 11, 305-346.
    • (1999) Neural Comput , vol.11 , pp. 305-346
    • Roweis, S.1    Ghahramani, Z.2
  • 79
    • 77950123253 scopus 로고    scopus 로고
    • Structural vector autoregressions: theory of indentification and algorithms for inference
    • Rubio-Ramírez, J. F., Waggoner, D. F., and Zha, T. (2010). Structural vector autoregressions: theory of indentification and algorithms for inference. Rev. Econ. Stud. 77, 665-696.
    • (2010) Rev. Econ. Stud. , vol.77 , pp. 665-696
    • Rubio-Ramírez, J.F.1    Waggoner, D.F.2    Zha, T.3
  • 80
    • 78649648075 scopus 로고    scopus 로고
    • Multivariate dynamical systems models for estimating causal interactions in fMRI
    • Ryali, S., Supekar, K., Chen, T., and Menon, V. (2011). Multivariate dynamical systems models for estimating causal interactions in fMRI. Neuroimage 54, 807-823.
    • (2011) Neuroimage , vol.54 , pp. 807-823
    • Ryali, S.1    Supekar, K.2    Chen, T.3    Menon, V.4
  • 81
    • 0002537922 scopus 로고    scopus 로고
    • Algorithm 808 ARfit-A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models
    • Schneider, T., and Neumaier, A. (2001). Algorithm 808: ARfit-A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Softw. 27, 58-65.
    • (2001) ACM Trans. Math. Softw , vol.27 , pp. 58-65
    • Schneider, T.1    Neumaier, A.2
  • 82
    • 33745595378 scopus 로고    scopus 로고
    • Causal connectivity of evolved neural networks during behavior
    • Seth, A. K. (2005). Causal connectivity of evolved neural networks during behavior. Network 16, 35-54.
    • (2005) Network , vol.16 , pp. 35-54
    • Seth, A.K.1
  • 83
    • 74149089224 scopus 로고    scopus 로고
    • A MATLAB toolbox for Granger causal connectivity analysis
    • Seth, A. K. (2010). A MATLAB toolbox for Granger causal connectivity analysis. J. Neurosci. Methods 186, 262-273.
    • (2010) J. Neurosci. Methods , vol.186 , pp. 262-273
    • Seth, A.K.1
  • 84
    • 84870266555 scopus 로고    scopus 로고
    • Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling
    • Seth, A. K., Chorley, P., and Barnet, L. C. (2013). Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling. Neuroimage 65, 540-555.
    • (2013) Neuroimage , vol.65 , pp. 540-555
    • Seth, A.K.1    Chorley, P.2    Barnet, L.C.3
  • 85
  • 86
    • 84986753417 scopus 로고
    • An approach to time series smoothing and forecasting using the EM algorithm
    • Shumway, R. H., and Stoffer, D. S. (1982). An approach to time series smoothing and forecasting using the EM algorithm. J. Time Ser. Anal. 3, 253-264.
    • (1982) J. Time Ser. Anal. , vol.3 , pp. 253-264
    • Shumway, R.H.1    Stoffer, D.S.2
  • 87
    • 0000997472 scopus 로고
    • Macroeconomics and reality
    • Sims, C. A. (1980). Macroeconomics and reality. Econometrica 48, 1-48.
    • (1980) Econometrica , vol.48 , pp. 1-48
    • Sims, C.A.1
  • 88
    • 0347466670 scopus 로고    scopus 로고
    • Bayesian methods in dynamic multivariate models
    • Sims, C. A., and Zha, T. (1998). Bayesian methods in dynamic multivariate models. Int. Econ. Rev. 39, 949-968.
    • (1998) Int. Econ. Rev. , vol.39 , pp. 949-968
    • Sims, C.A.1    Zha, T.2
  • 90
    • 77954383250 scopus 로고    scopus 로고
    • Identification and validation of effective connectivity networks in functional magnetic resonance imaging using switching linear dynamic systems
    • Smith, J. F., Pillai, A. S., Chen, K., and Horwitz, B. (2010). Identification and validation of effective connectivity networks in functional magnetic resonance imaging using switching linear dynamic systems. Neuroimage 52, 1027-1040.
    • (2010) Neuroimage , vol.52 , pp. 1027-1040
    • Smith, J.F.1    Pillai, A.S.2    Chen, K.3    Horwitz, B.4
  • 92
    • 84862961887 scopus 로고    scopus 로고
    • Effective connectivity modeling for fMRI: Six issues and possible solutions using linear dynamic systems
    • doi: 10.3389/fnsys.2011.00104
    • Smith, J. F., Pillai, A., Chen, K., and Horwitz, B. (2011b). Effective connectivity modeling for fMRI: Six issues and possible solutions using linear dynamic systems. Front. Syst. Neurosci. 5:104. doi: 10.3389/fnsys.2011.00104
    • (2011) Front. Syst. Neurosci. , vol.5
    • Smith, J.F.1    Pillai, A.2    Chen, K.3    Horwitz, B.4
  • 93
    • 84972517124 scopus 로고
    • Collinearity and least squares regression
    • Stewart, G. W. (1987). Collinearity and least squares regression. Stat. Sci. 2, 68-84.
    • (1987) Stat. Sci. , vol.2 , pp. 68-84
    • Stewart, G.W.1
  • 95
    • 1242271382 scopus 로고    scopus 로고
    • Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data
    • Sun, F. T., Miller, L. M., and D'Esposito, M. (2004). Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. Neuroimage 21, 647-658.
    • (2004) Neuroimage , vol.21 , pp. 647-658
    • Sun, F.T.1    Miller, L.M.2    D'Esposito, M.3
  • 96
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal component analysis
    • Tipping, M. E., and Bishop, C. M. (1999). Probabilistic principal component analysis. J. R. Statist. Soc. Ser. B 61, 611-622.
    • (1999) J. R. Statist. Soc. Ser. B , vol.61 , pp. 611-622
    • Tipping, M.E.1    Bishop, C.M.2
  • 97
    • 6344254546 scopus 로고    scopus 로고
    • Spatio-temporal autoregressive models defined over brain manifolds
    • Valdés-Sosa, P. A. (2004). Spatio-temporal autoregressive models defined over brain manifolds. Neuroinformatics 2, 239-250.
    • (2004) Neuroinformatics , vol.2 , pp. 239-250
    • Valdés-Sosa, P.A.1
  • 98
    • 80051795744 scopus 로고    scopus 로고
    • Effective connectivity: influence, causality and biophysical modelling
    • Valdés-Sosa, P. A., Roebroeck, A., Daunizeau, J., and Friston, K. (2011). Effective connectivity: influence, causality and biophysical modelling. Neuroimage 58, 339-361.
    • (2011) Neuroimage , vol.58 , pp. 339-361
    • Valdés-Sosa, P.A.1    Roebroeck, A.2    Daunizeau, J.3    Friston, K.4
  • 100
    • 0003359612 scopus 로고    scopus 로고
    • The unscented Kalman filter
    • ed S. Hayken (New York, NY: Wiley Publishing
    • Wan, E. A., and van der Merwe, R. (2001). "The unscented Kalman filter," in Kalman Filtering and Neural Networks, ed S. Hayken (New York, NY: Wiley Publishing), 221-280.
    • (2001) Kalman Filtering and Neural Networks , pp. 221-280
    • Wan, E.A.1    van der Merwe, R.2
  • 102
    • 59649084670 scopus 로고    scopus 로고
    • Maximum likelihood estimation of state space models from frequency domain data
    • Wills, A., Ninness, B., and Gibson, S. (2009). Maximum likelihood estimation of state space models from frequency domain data. IEEE Trans. Automat. Contr. 54, 19-33.
    • (2009) IEEE Trans. Automat. Contr. , vol.54 , pp. 19-33
    • Wills, A.1    Ninness, B.2    Gibson, S.3
  • 103
    • 0001098205 scopus 로고    scopus 로고
    • "Estimation of principal components and related models by iterative least squares,"
    • ed P. R. Krishnaiah (New York NY: Academic Press)
    • Wold, H. (1996). "Estimation of principal components and related models by iterative least squares," in Multivariate Analysis, ed P. R. Krishnaiah (New York, NY: Academic Press), 391-420.
    • (1996) Multivariate Analysis , pp. 391-420
    • Wold, H.1
  • 105
    • 48549084830 scopus 로고    scopus 로고
    • Dynamics and nonlinearities of the BOLD response at very short stimulus durations
    • Yesilyurt, B., Ugurbil, K., and Uludag, K. (2008). Dynamics and nonlinearities of the BOLD response at very short stimulus durations. Magn. Reson. Imaging 26, 853-862.
    • (2008) Magn. Reson. Imaging , vol.26 , pp. 853-862
    • Yesilyurt, B.1    Ugurbil, K.2    Uludag, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.