메뉴 건너뛰기




Volumn 56, Issue 4, 2011, Pages 2109-2128

Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering

Author keywords

Blind deconvolution; Cubature Kalman filter; Dynamic expectation maximization; FMRI; Hemodynamic modeling; Neuronal; Nonlinear; Smoother; Stochastic

Indexed keywords

ALGORITHM; ARTICLE; BAYES THEOREM; BRAIN ELECTROPHYSIOLOGY; BRAIN FUNCTION; CUBATURE KALMAN FILTER; ELECTROENCEPHALOGRAM; EVOKED BRAIN STEM RESPONSE; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HEMODYNAMIC PARAMETERS; MATHEMATICAL MODEL; NERVE CELL; NONLINEAR SYSTEM; PRIORITY JOURNAL; STATISTICAL ANALYSIS;

EID: 79957479620     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2011.03.005     Document Type: Article
Times cited : (151)

References (68)
  • 1
    • 0032213559 scopus 로고    scopus 로고
    • The variability of human, BOLD hemodynamic responses
    • Aguirre G.K., Zarahn E., D'esposito M. The variability of human, BOLD hemodynamic responses. Neuroimage 1998, 8:360-369.
    • (1998) Neuroimage , vol.8 , pp. 360-369
    • Aguirre, G.K.1    Zarahn, E.2    D'esposito, M.3
  • 5
    • 84878938311 scopus 로고    scopus 로고
    • Continuous functional magnetic resonance imaging reveals dynamic nonlinearities of "dose-response" curves for finger opposition
    • Berns G.S., Song A.W., Mao H. Continuous functional magnetic resonance imaging reveals dynamic nonlinearities of "dose-response" curves for finger opposition. J. Neurosci. 1999, 19:1-6.
    • (1999) J. Neurosci. , vol.19 , pp. 1-6
    • Berns, G.S.1    Song, A.W.2    Mao, H.3
  • 6
    • 0034816846 scopus 로고    scopus 로고
    • Spatial heterogeneity of the nonlinear dynamics in the FMRI BOLD response
    • Birn R.M., Saad Z.S., Bandettini P.A. Spatial heterogeneity of the nonlinear dynamics in the FMRI BOLD response. Neuroimage 2001, 14:817-826.
    • (2001) Neuroimage , vol.14 , pp. 817-826
    • Birn, R.M.1    Saad, Z.S.2    Bandettini, P.A.3
  • 7
    • 0000338219 scopus 로고    scopus 로고
    • Local linearization method for the numerical solution of stochastic differential equations
    • Biscay R., Jimenez J.C., Riera J.J., Valdes P.A. Local linearization method for the numerical solution of stochastic differential equations. Ann. Inst. Stat. Math. 1996, 48:631-644.
    • (1996) Ann. Inst. Stat. Math. , vol.48 , pp. 631-644
    • Biscay, R.1    Jimenez, J.C.2    Riera, J.J.3    Valdes, P.A.4
  • 8
    • 0029166541 scopus 로고
    • Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
    • Biswal B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995, 34:537-541.
    • (1995) Magn. Reson. Med. , vol.34 , pp. 537-541
    • Biswal, B.1    Yetkin, F.Z.2    Haughton, V.M.3    Hyde, J.S.4
  • 9
    • 0001231547 scopus 로고
    • Digital synthesis of non-linear filters
    • Bucy R.S., Senne K.D. Digital synthesis of non-linear filters. Automatica 1971, 7:287-298.
    • (1971) Automatica , vol.7 , pp. 287-298
    • Bucy, R.S.1    Senne, K.D.2
  • 10
    • 0031809018 scopus 로고    scopus 로고
    • Dynamics of blood flow and oxygenation changes during brain activation: the balloon model
    • Buxton R.B., Wong E.C., Frank L.R. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn. Reson. Med. 1998, 39:855-864.
    • (1998) Magn. Reson. Med. , vol.39 , pp. 855-864
    • Buxton, R.B.1    Wong, E.C.2    Frank, L.R.3
  • 12
    • 79957503313 scopus 로고    scopus 로고
    • in press. fMRI connectivity, meaning and empiricism Comments on
    • Roebroeck et al. The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution. Neuroimage.
    • David, O., in press. fMRI connectivity, meaning and empiricism Comments on: Roebroeck et al. The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution. Neuroimage.
    • David, O.1
  • 14
    • 33748323109 scopus 로고    scopus 로고
    • Using nonlinear models in fMRI data analysis: model selection and activation detection
    • Deneux T., Faugeras O. Using nonlinear models in fMRI data analysis: model selection and activation detection. Neuroimage 2006, 32:1669-1689.
    • (2006) Neuroimage , vol.32 , pp. 1669-1689
    • Deneux, T.1    Faugeras, O.2
  • 17
    • 0036334947 scopus 로고    scopus 로고
    • Bayesian estimation of dynamical systems: an application to fMRI
    • Friston K.J. Bayesian estimation of dynamical systems: an application to fMRI. Neuroimage 2002, 16:513-530.
    • (2002) Neuroimage , vol.16 , pp. 513-530
    • Friston, K.J.1
  • 18
    • 44449177451 scopus 로고    scopus 로고
    • Variational filtering
    • Friston K. Variational filtering. Neuroimage 2008, 41:747-766.
    • (2008) Neuroimage , vol.41 , pp. 747-766
    • Friston, K.1
  • 19
    • 57149113922 scopus 로고    scopus 로고
    • Hierarchical models in the brain
    • Friston K.J. Hierarchical models in the brain. PLoS Comput. Biol. 2008, 4:e1000211.
    • (2008) PLoS Comput. Biol. , vol.4
    • Friston, K.J.1
  • 20
    • 79957534422 scopus 로고    scopus 로고
    • in press. Dynamic casual modeling and Granger causality Comments on
    • Model selection, causality and deconvolution. Neuroimage.
    • Friston, K., in press. Dynamic casual modeling and Granger causality Comments on: the identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution. Neuroimage.
    • the identification of interacting networks in the brain using fMRI
    • Friston, K.1
  • 21
    • 0033778839 scopus 로고    scopus 로고
    • Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics
    • Friston K.J., Mechelli A., Turner R., Price C.J. Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 2000, 12:466-477.
    • (2000) Neuroimage , vol.12 , pp. 466-477
    • Friston, K.J.1    Mechelli, A.2    Turner, R.3    Price, C.J.4
  • 25
    • 0038777434 scopus 로고    scopus 로고
    • Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution
    • Gitelman D.R., Penny W.D., Ashburner J., Friston K.J. Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. Neuroimage 2003, 19:200-207.
    • (2003) Neuroimage , vol.19 , pp. 200-207
    • Gitelman, D.R.1    Penny, W.D.2    Ashburner, J.3    Friston, K.J.4
  • 26
    • 1842505168 scopus 로고    scopus 로고
    • Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses
    • Handwerker D., Ollinger J., D'Esposito M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 2004, 21:1639-1651.
    • (2004) Neuroimage , vol.21 , pp. 1639-1651
    • Handwerker, D.1    Ollinger, J.2    D'Esposito, M.3
  • 28
    • 0027803368 scopus 로고
    • Keeping the neural networks simple by minimizing the description length of the weights
    • ACM
    • Hinton G.E., van Camp D. Keeping the neural networks simple by minimizing the description length of the weights. Proceedings of COLT-93 1993, 5-13. ACM.
    • (1993) Proceedings of COLT-93 , pp. 5-13
    • Hinton, G.E.1    van Camp, D.2
  • 30
    • 0036168317 scopus 로고    scopus 로고
    • CC commentary: intrinsic signals and functional brain mapping: caution, blood vessels at work
    • Iadecola C. CC commentary: intrinsic signals and functional brain mapping: caution, blood vessels at work. Cereb. Cortex 2002, 12:223-224.
    • (2002) Cereb. Cortex , vol.12 , pp. 223-224
    • Iadecola, C.1
  • 31
    • 0034186948 scopus 로고    scopus 로고
    • Gaussian filters for nonlinear filtering problems.
    • Ito K., Xiong K. Gaussian filters for nonlinear filtering problems. IEEE Trans. Automatic Control 2002, 45:910-927.
    • (2002) IEEE Trans. Automatic Control , vol.45 , pp. 910-927
    • Ito, K.1    Xiong, K.2
  • 33
    • 41549127249 scopus 로고    scopus 로고
    • Bayesian model comparison in nonlinear BOLD fMRI hemodynamics
    • Jacobsen D., Hansen L., Madsen K. Bayesian model comparison in nonlinear BOLD fMRI hemodynamics. Neural Comput. 2008, 20:738-755.
    • (2008) Neural Comput. , vol.20 , pp. 738-755
    • Jacobsen, D.1    Hansen, L.2    Madsen, K.3
  • 34
    • 79957525426 scopus 로고    scopus 로고
    • Joint state and parameter estimation for biochemical dynamic pathways with iterative extended Kalman filter: comparison with dual state and parameter estimation
    • Ji Z., Brown M. Joint state and parameter estimation for biochemical dynamic pathways with iterative extended Kalman filter: comparison with dual state and parameter estimation. Open Automation Control Syst. J. 2009, 2:69-77.
    • (2009) Open Automation Control Syst. J. , vol.2 , pp. 69-77
    • Ji, Z.1    Brown, M.2
  • 35
    • 31244434786 scopus 로고    scopus 로고
    • A simple algebraic expression to evaluate the local linearization schemes for stochastic differential equations 1
    • Jimenez J.C. A simple algebraic expression to evaluate the local linearization schemes for stochastic differential equations 1. Appl. Math. Lett. 2002, 15:775-780.
    • (2002) Appl. Math. Lett. , vol.15 , pp. 775-780
    • Jimenez, J.C.1
  • 36
    • 0242366075 scopus 로고    scopus 로고
    • Local linearization filters for non-linear continuous-discrete state space models with multiplicative noise
    • Jimenez J.C., Ozaki T. Local linearization filters for non-linear continuous-discrete state space models with multiplicative noise. Int. J. Control 2003, 76:1159-1170.
    • (2003) Int. J. Control , vol.76 , pp. 1159-1170
    • Jimenez, J.C.1    Ozaki, T.2
  • 37
    • 0033070774 scopus 로고    scopus 로고
    • Simulation of stochastic differential equations through the local linearization method. A comparative study
    • Jimenez J.C., Shoji I., Ozaki T. Simulation of stochastic differential equations through the local linearization method. A comparative study. J. Stat. Phys. 1999, 94:587-602.
    • (1999) J. Stat. Phys. , vol.94 , pp. 587-602
    • Jimenez, J.C.1    Shoji, I.2    Ozaki, T.3
  • 39
    • 0033723743 scopus 로고    scopus 로고
    • A new method for the nonlinear transformation of means and covariances in filters and estimators
    • Julier S., Uhlmann J., Durrant-Whyte H.F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Automatic Control 2002, 45:477-482.
    • (2002) IEEE Trans. Automatic Control , vol.45 , pp. 477-482
    • Julier, S.1    Uhlmann, J.2    Durrant-Whyte, H.F.3
  • 40
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82:35-45.
    • (1960) J. Basic Eng. , vol.82 , pp. 35-45
    • Kalman, R.E.1
  • 41
    • 0015207267 scopus 로고
    • Discrete square root filtering: a survey of current techniques
    • Kaminski P., Bryson A., Schmidt S. Discrete square root filtering: a survey of current techniques. IEEE Trans. Automatic Control 1971, 16:727-736.
    • (1971) IEEE Trans. Automatic Control , vol.16 , pp. 727-736
    • Kaminski, P.1    Bryson, A.2    Schmidt, S.3
  • 43
    • 0034789167 scopus 로고    scopus 로고
    • Physiological noise in oxygenation sensitive magnetic resonance imaging
    • Krüger G., Glover G.H. Physiological noise in oxygenation sensitive magnetic resonance imaging. Magn. Reson. Med. 2001, 46:631-637.
    • (2001) Magn. Reson. Med. , vol.46 , pp. 631-637
    • Krüger, G.1    Glover, G.H.2
  • 44
    • 0035213546 scopus 로고    scopus 로고
    • Relationship of spikes, synaptic activity, and local changes of cerebral blood flow
    • Lauritzen M. Relationship of spikes, synaptic activity, and local changes of cerebral blood flow. J. Cereb. Blood Flow Metab. 2001, 21:1367-1383.
    • (2001) J. Cereb. Blood Flow Metab. , vol.21 , pp. 1367-1383
    • Lauritzen, M.1
  • 47
    • 0037194549 scopus 로고    scopus 로고
    • The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal
    • Logothetis N.K. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2002, 357:1003.
    • (2002) Philos. Trans. R. Soc. Lond. B Biol. Sci. , vol.357 , pp. 1003
    • Logothetis, N.K.1
  • 49
    • 0033614973 scopus 로고    scopus 로고
    • Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging
    • Magistretti P., Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1999, 354:1155-1163.
    • (1999) Philos. Trans. R. Soc. Lond. B Biol. Sci. , vol.354 , pp. 1155-1163
    • Magistretti, P.1    Pellerin, L.2
  • 51
    • 0034810706 scopus 로고    scopus 로고
    • Nonlinear coupling between evoked rCBF and BOLD signals: a simulation study of hemodynamic responses
    • Mechelli A., Price C., Friston K. Nonlinear coupling between evoked rCBF and BOLD signals: a simulation study of hemodynamic responses. Neuroimage 2001, 14:862-872.
    • (2001) Neuroimage , vol.14 , pp. 862-872
    • Mechelli, A.1    Price, C.2    Friston, K.3
  • 54
    • 10244276467 scopus 로고    scopus 로고
    • Nonlinear estimation and modeling of noisy time-series by dual Kalman filtering methods.
    • Ph.D thesis, Oregon Graduate Institute of Science and Technology.
    • Nelson, A.T., 2000. Nonlinear estimation and modeling of noisy time-series by dual Kalman filtering methods. Ph.D thesis, Oregon Graduate Institute of Science and Technology.
    • (2000)
    • Nelson, A.T.1
  • 55
    • 0034326226 scopus 로고    scopus 로고
    • New developments in state estimation for nonlinear systems
    • Norgaard M., Poulsen N.K., Ravn O. New developments in state estimation for nonlinear systems. Automatica 2000, 36:1627-1638.
    • (2000) Automatica , vol.36 , pp. 1627-1638
    • Norgaard, M.1    Poulsen, N.K.2    Ravn, O.3
  • 56
    • 0002913686 scopus 로고
    • A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: a local linearization approach
    • Ozaki T. A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: a local linearization approach. Stat. Sin. 1992, 2:113-135.
    • (1992) Stat. Sin. , vol.2 , pp. 113-135
    • Ozaki, T.1
  • 57
  • 58
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • Robbins H., Monro S. A stochastic approximation method. Ann. Math. Stat. 1951, 22:400-407.
    • (1951) Ann. Math. Stat. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 60
    • 79957473894 scopus 로고    scopus 로고
    • in press-b. The identification of interacting networks in the brain using fMRI: model selection
    • causality and deconvolution. Neuroimage.
    • Roebroeck, A., Formisano, E., Goebel, R., in press-b. The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. Neuroimage.
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 61
    • 63449123513 scopus 로고    scopus 로고
    • Recursive noise adaptive Kalman filtering by variational Bayesian approximations
    • Särkkä S., Nummenmaa A. Recursive noise adaptive Kalman filtering by variational Bayesian approximations. IEEE Trans. Automatic Control 2009, 54:596-600.
    • (2009) IEEE Trans. Automatic Control , vol.54 , pp. 596-600
    • Särkkä, S.1    Nummenmaa, A.2
  • 63
    • 37649031765 scopus 로고    scopus 로고
    • Estimation of parameters and unobserved components for nonlinear systems from noisy time series
    • Sitz A., Schwarz U., Kurths J., Voss H.U. Estimation of parameters and unobserved components for nonlinear systems from noisy time series. Phys. Rev. E 2002, 66:1-9.
    • (2002) Phys. Rev. E , vol.66 , pp. 1-9
    • Sitz, A.1    Schwarz, U.2    Kurths, J.3    Voss, H.U.4
  • 64
    • 62349103274 scopus 로고    scopus 로고
    • Identification and comparison of stochastic metabolic/hemodynamic models (sMHM) for the generation of the BOLD signal
    • Sotero R.C., Trujillo-Barreto N.J., Jiménez J.C., Carbonell F., Rodríguez-Rojas R. Identification and comparison of stochastic metabolic/hemodynamic models (sMHM) for the generation of the BOLD signal. J. Comput. Neurosci. 2009, 26:251-269.
    • (2009) J. Comput. Neurosci. , vol.26 , pp. 251-269
    • Sotero, R.C.1    Trujillo-Barreto, N.J.2    Jiménez, J.C.3    Carbonell, F.4    Rodríguez-Rojas, R.5
  • 67
    • 8344287766 scopus 로고    scopus 로고
    • Sigma-point Kalman filters for probabilistic inference in dynamic state-space models.
    • Ph.D. thesis, Oregon Graduate Institute of Science and Technology.
    • Van der Merwe, R., 2004. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models. Ph.D. thesis, Oregon Graduate Institute of Science and Technology.
    • (2004)
    • Van der Merwe, R.1
  • 68
    • 18844439909 scopus 로고    scopus 로고
    • Unscented Kalman filtering for additive noise case: augmented vs. non-augmented
    • Wu Y., Hu D., Wu M., Hu X. Unscented Kalman filtering for additive noise case: augmented vs. non-augmented. IEEE Signal Process Lett. 2005, 12:357-359.
    • (2005) IEEE Signal Process Lett. , vol.12 , pp. 357-359
    • Wu, Y.1    Hu, D.2    Wu, M.3    Hu, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.