메뉴 건너뛰기




Volumn 8, Issue 6, 2013, Pages

A Novel Approach for Lie Detection Based on F-Score and Extreme Learning Machine

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CLASSIFIER; ELECTRODE; ELECTROENCEPHALOGRAM; EVENT RELATED POTENTIAL; F SCORE; FORENSIC MEDICINE; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HUMAN; MACHINE LEARNING; PRINCIPAL COMPONENT ANALYSIS; SCORING SYSTEM; SENSITIVITY AND SPECIFICITY; SUPPORT VECTOR MACHINE; ALGORITHM; ARTIFICIAL INTELLIGENCE; ELECTROENCEPHALOGRAPHY; FEMALE; GUILT; MALE; THEORETICAL MODEL; YOUNG ADULT;

EID: 84878633736     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0064704     Document Type: Article
Times cited : (62)

References (54)
  • 2
    • 13944249575 scopus 로고    scopus 로고
    • Neural correlates of telling lies: a functional magnetic resonance imaging study at 4Tesla
    • Phan KL, Magalhaes A, Ziemlewicz TJ, Fitzgerald DA, Green C, et al. (2005) Neural correlates of telling lies: a functional magnetic resonance imaging study at 4Tesla. Acad Radiol 12(2): 164-172.
    • (2005) Acad Radiol , vol.12 , Issue.2 , pp. 164-172
    • Phan, K.L.1    Magalhaes, A.2    Ziemlewicz, T.J.3    Fitzgerald, D.A.4    Green, C.5
  • 3
    • 1942539482 scopus 로고    scopus 로고
    • Event-related potentials in the detection of deception
    • Academic Press, New York
    • Rosenfeld JP (2002) Event-related potentials in the detection of deception. Handbook of Polygraph Testing. Academic Press, New York. 265-286.
    • (2002) Handbook of Polygraph Testing , pp. 265-286
    • Rosenfeld, J.P.1
  • 4
    • 27544453543 scopus 로고    scopus 로고
    • Classifying spatial patterns of brain activity with machine learning methods: Application to lie detection
    • Davatzikos C, Ruparel K, Fan Y, Shen DG, Acharyya M, et al. (2005) Classifying spatial patterns of brain activity with machine learning methods: Application to lie detection. NeuroImage 28(3): 663-668.
    • (2005) NeuroImage , vol.28 , Issue.3 , pp. 663-668
    • Davatzikos, C.1    Ruparel, K.2    Fan, Y.3    Shen, D.G.4    Acharyya, M.5
  • 5
    • 0033801879 scopus 로고    scopus 로고
    • P300 as a clinical assay: rational, evaluation, and findings
    • Polich J, Herbst KL, (2000) P300 as a clinical assay: rational, evaluation, and findings. Int J Psychophysi 38(1): 3-19.
    • (2000) Int J Psychophysi , vol.38 , Issue.1 , pp. 3-19
    • Polich, J.1    Herbst, K.L.2
  • 7
    • 54049106592 scopus 로고    scopus 로고
    • The Complex Trial Protocol (CTP): A new, countermeasure-resistant, accurate, P300-based method for detection of concealed information
    • Rosenfeld JP, Labkovsky E, Winograd M, Lui MA, Vandenboom C, et al. (2008) The Complex Trial Protocol (CTP): A new, countermeasure-resistant, accurate, P300-based method for detection of concealed information. Psychophysiology 45(6): 906-919.
    • (2008) Psychophysiology , vol.45 , Issue.6 , pp. 906-919
    • Rosenfeld, J.P.1    Labkovsky, E.2    Winograd, M.3    Lui, M.A.4    Vandenboom, C.5
  • 8
    • 0026353240 scopus 로고
    • The truth will out: interrogative polygraphy ("lie detection") with event-related potentials
    • Farwell LA, Donchin E, (1991) The truth will out: interrogative polygraphy ("lie detection") with event-related potentials. Psychophysiology 28(5): 531-547.
    • (1991) Psychophysiology , vol.28 , Issue.5 , pp. 531-547
    • Farwell, L.A.1    Donchin, E.2
  • 10
    • 80655128168 scopus 로고    scopus 로고
    • Denoised P300 and machine learning-based concealed information test method
    • Gao JF, Yan XG, Sun JC, Zheng CX, (2011) Denoised P300 and machine learning-based concealed information test method. Comput Method Program Biomed 104(3): 410-417.
    • (2011) Comput Method Program Biomed , vol.104 , Issue.3 , pp. 410-417
    • Gao, J.F.1    Yan, X.G.2    Sun, J.C.3    Zheng, C.X.4
  • 11
    • 79961033437 scopus 로고    scopus 로고
    • Continuous EEG signal analysis for asynchronous BCI application
    • Hsu WY, (2011) Continuous EEG signal analysis for asynchronous BCI application, Int J Neural Syst 21. (4): 335-350.
    • (2011) Int J Neural Syst , vol.21 , Issue.4 , pp. 335-350
    • Hsu, W.Y.1
  • 12
    • 84862073311 scopus 로고    scopus 로고
    • An auditory Brain-Computer interface with accuracy prediction
    • Gordo MAL, Pelayo F, Prieto A, Fernandez E, (2012) An auditory Brain-Computer interface with accuracy prediction. Int J Neural Syst 22(3): 1-14.
    • (2012) Int J Neural Syst , vol.22 , Issue.3 , pp. 1-14
    • Gordo, M.A.L.1    Pelayo, F.2    Prieto, A.3    Fernandez, E.4
  • 14
    • 77951577412 scopus 로고    scopus 로고
    • Automatic identification of epileptic and background EEG signals using frequency domain parameters, Int J Neural Syst
    • Faust O, Acharya UR, Aust LM, Sputh BHC, (2010) Automatic identification of epileptic and background EEG signals using frequency domain parameters, Int J Neural Syst. 20(2): 159-176.
    • (2010) , vol.20 , Issue.2 , pp. 159-176
    • Faust, O.1    Acharya, U.R.2    Aust, L.M.3    Sputh, B.H.C.4
  • 15
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang GB, Zhu QY, Siew CK, (2006) Extreme learning machine: theory and applications. Neurocomputing 70: 489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 16
    • 80052836687 scopus 로고    scopus 로고
    • Epileptic EEG classification based on extreme learning machine and nonlinear features
    • Yuan Q, Zhou WD, Li SF, Cai DM, (2011) Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res 96: 29-38.
    • (2011) Epilepsy Res , vol.96 , pp. 29-38
    • Yuan, Q.1    Zhou, W.D.2    Li, S.F.3    Cai, D.M.4
  • 17
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
    • Bartlett PL, (1998) The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans Inform Theory 44(2): 525-536.
    • (1998) IEEE Trans Inform Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 19
    • 77957979158 scopus 로고    scopus 로고
    • Realtime training on mobile devices for face recognition applications
    • Choi K, Toh KA, Byun H, (2011) Realtime training on mobile devices for face recognition applications. Pattern Recogn 44(2): 386-400.
    • (2011) Pattern Recogn , vol.44 , Issue.2 , pp. 386-400
    • Choi, K.1    Toh, K.A.2    Byun, H.3
  • 20
    • 78049526620 scopus 로고    scopus 로고
    • Sales forecasting system based on gray extreme learning machine with Taguchi method in retail industry
    • Chen FL, Ou TY, (2011) Sales forecasting system based on gray extreme learning machine with Taguchi method in retail industry. Expert Syst Appl 38(3): 1336-1345.
    • (2011) Expert Syst Appl , vol.38 , Issue.3 , pp. 1336-1345
    • Chen, F.L.1    Ou, T.Y.2
  • 21
    • 33646835788 scopus 로고    scopus 로고
    • Classification of mental tasks from EEG signals using extreme learning machine
    • Liang NY, Saratchandran P, Huang GB, Sundararajan N, (2006) Classification of mental tasks from EEG signals using extreme learning machine. Int J Neural Syst 16: 29-38.
    • (2006) Int J Neural Syst , vol.16 , pp. 29-38
    • Liang, N.Y.1    Saratchandran, P.2    Huang, G.B.3    Sundararajan, N.4
  • 22
    • 84870254532 scopus 로고    scopus 로고
    • EEG-based vigilance estimation using extreme learning machines, Neurocomputing
    • Shi LC, Lu BL, (2013) EEG-based vigilance estimation using extreme learning machines, Neurocomputing. 102: 135-143.
    • (2013) , vol.102 , pp. 135-143
    • Shi, L.C.1    Lu, B.L.2
  • 23
    • 78651302006 scopus 로고    scopus 로고
    • A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine
    • Song Y, Liò P, (2010) A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine. J Biomed Sci Eng 3: 556-567.
    • (2010) J Biomed Sci Eng , vol.3 , pp. 556-567
    • Song, Y.1    Liò, P.2
  • 24
    • 33646832426 scopus 로고    scopus 로고
    • The forecast of the postoperative survival time of patients suffered from non-small cell lung cancer based on PCA and extreme learning machine
    • Han F, Huang DS, (2006) The forecast of the postoperative survival time of patients suffered from non-small cell lung cancer based on PCA and extreme learning machine. Int J Neural Syst 16(1): 39-46.
    • (2006) Int J Neural Syst , vol.16 , Issue.1 , pp. 39-46
    • Han, F.1    Huang, D.S.2
  • 25
    • 77950189091 scopus 로고    scopus 로고
    • Combination of feature selection approaches with SVM in credit scoring
    • Chen FL, Li FC, (2010) Combination of feature selection approaches with SVM in credit scoring. Expert Syst Appl 37: 4902-4909.
    • (2010) Expert Syst Appl , vol.37 , pp. 4902-4909
    • Chen, F.L.1    Li, F.C.2
  • 26
    • 67349259624 scopus 로고    scopus 로고
    • A new feature selection method on classification of medical datasets: Kernel F-score feature selection
    • Polat K, Güneş S, (2009) A new feature selection method on classification of medical datasets: Kernel F-score feature selection. Expert Syst Appl 36 (7): 10367-10373.
    • (2009) Expert Syst Appl , vol.36 , Issue.7 , pp. 10367-10373
    • Polat, K.1    Güneş, S.2
  • 27
    • 56349089940 scopus 로고    scopus 로고
    • Support vector machines combined with feature selection for breast cancer diagnosis
    • Akay MF, (2009) Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst Appl 36(2): 3240-3247.
    • (2009) Expert Syst Appl , vol.36 , Issue.2 , pp. 3240-3247
    • Akay, M.F.1
  • 29
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang GB, Chen L, Siew CK, (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Networks 17(4): 879-892.
    • (2006) IEEE Trans Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 30
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang GB Chen L, (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71: 3460-3468.
    • (2008) Neurocomputing , vol.71 , pp. 3460-3468
    • Huang, G.B.1    Chen, L.2
  • 31
    • 68949200808 scopus 로고    scopus 로고
    • Error minimized extreme learning machine with growth of hidden nodes and incremental learning
    • Feng GR, Huang GB, Lin QP, Gay R, (2009) Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans Neural Networks 20: 1352-1357.
    • (2009) IEEE Trans Neural Networks , vol.20 , pp. 1352-1357
    • Feng, G.R.1    Huang, G.B.2    Lin, Q.P.3    Gay, R.4
  • 32
    • 80051671932 scopus 로고    scopus 로고
    • TROP-ELM: a double-regularized ELM using LARS and Tikhonov regularization
    • Miche Y, Heeswijk MV, Bas P, Simula O, Lendasse A, (2011) TROP-ELM: a double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing 74(16): 2413-2421.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2413-2421
    • Miche, Y.1    Heeswijk, M.V.2    Bas, P.3    Simula, O.4    Lendasse, A.5
  • 33
    • 55749087656 scopus 로고    scopus 로고
    • An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks
    • Huynh HT, Won Y, Kim J, (2008) An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks. Int J Neural Syst 18(5): 433-441.
    • (2008) Int J Neural Syst , vol.18 , Issue.5 , pp. 433-441
    • Huynh, H.T.1    Won, Y.2    Kim, J.3
  • 34
    • 0033059251 scopus 로고    scopus 로고
    • P300 Scalp amplitude distribution as an index of deception in a simulated cognitive deficit model
    • Rosenfeld JP, Ellwanger JW, Nolana K, Wua S, Bermanna RG, et al. (1999) P300 Scalp amplitude distribution as an index of deception in a simulated cognitive deficit model. Int J Psychophysi 33(1): 3-19.
    • (1999) Int J Psychophysi , vol.33 , Issue.1 , pp. 3-19
    • Rosenfeld, J.P.1    Ellwanger, J.W.2    Nolana, K.3    Wua, S.4    Bermanna, R.G.5
  • 35
    • 34548522294 scopus 로고    scopus 로고
    • Updating P300: An integrative theory of P3a and P3b
    • Polich J, (2007) Updating P300: An integrative theory of P3a and P3b. Clin Neurophysiol 118(10): 2128-2148.
    • (2007) Clin Neurophysiol , vol.118 , Issue.10 , pp. 2128-2148
    • Polich, J.1
  • 36
    • 84859756574 scopus 로고    scopus 로고
    • A Novel Concealed Information Test Method Based on Independent Component Analysis and Support Vector Machine
    • Gao JF, Lu L, Yang Y, Yu G, Na LT, et al. (2012) A Novel Concealed Information Test Method Based on Independent Component Analysis and Support Vector Machine. Clin EEG Neurosci 43(1): 54-63.
    • (2012) Clin EEG Neurosci , vol.43 , Issue.1 , pp. 54-63
    • Gao, J.F.1    Lu, L.2    Yang, Y.3    Yu, G.4    Na, L.T.5
  • 37
    • 84856051402 scopus 로고    scopus 로고
    • Application of competitive Hopfield neural network to brain-computer interface systems
    • Hsu WY, (2012) Application of competitive Hopfield neural network to brain-computer interface systems. Int J Neural Syst 22(1): 51-62.
    • (2012) Int J Neural Syst , vol.22 , Issue.1 , pp. 51-62
    • Hsu, W.Y.1
  • 39
    • 67349231310 scopus 로고    scopus 로고
    • Using support vector machine with a hybrid feature selection method to the stock trend prediction
    • Lee MC, (2009) Using support vector machine with a hybrid feature selection method to the stock trend prediction. Expert Syst Appl 36: 10896-10904.
    • (2009) Expert Syst Appl , vol.36 , pp. 10896-10904
    • Lee, M.C.1
  • 41
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John GH, (1997) Wrappers for feature subset selection. Artificial Intelligence 97(1-2): 273-324.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 42
    • 38649113208 scopus 로고    scopus 로고
    • Application of wrapper approach and composite classifier to the stock trend prediction
    • Huang CJ, Dian X, Chuang YT, (2007) Application of wrapper approach and composite classifier to the stock trend prediction. Expert Syst Appl 34 (4): 2870-2878.
    • (2007) Expert Syst Appl , vol.34 , Issue.4 , pp. 2870-2878
    • Huang, C.J.1    Dian, X.2    Chuang, Y.T.3
  • 43
    • 10244259183 scopus 로고    scopus 로고
    • PCA-Based Feature Selection Scheme for Machine Defect Classification
    • Malhi A, Gao RX, (2004) PCA-Based Feature Selection Scheme for Machine Defect Classification. IEEE Trans Instrum Meas 53(6): 1517-1525.
    • (2004) IEEE Trans Instrum Meas , vol.53 , Issue.6 , pp. 1517-1525
    • Malhi, A.1    Gao, R.X.2
  • 44
    • 70349490443 scopus 로고    scopus 로고
    • A comparative analysis of principal component and independent component techniques for electrocardiograms
    • Chawla MPS, (2009) A comparative analysis of principal component and independent component techniques for electrocardiograms. Neural Comput Appl 18(6): 539-556.
    • (2009) Neural Comput Appl , vol.18 , Issue.6 , pp. 539-556
    • Chawla, M.P.S.1
  • 45
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu CW, Lin CJ, (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Networks 13: 415-425.
    • (2002) IEEE Trans Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 46
    • 63849201451 scopus 로고    scopus 로고
    • Automatic EEG artifact removal: A weighted support vector machine approach with error correction
    • Shao SY, Shen KQ, On CJ, Wilder-Smith EPV, Li XP, (2009) Automatic EEG artifact removal: A weighted support vector machine approach with error correction. IEEE Trans Biomed Eng 56(2): 336-344.
    • (2009) IEEE Trans Biomed Eng , vol.56 , Issue.2 , pp. 336-344
    • Shao, S.Y.1    Shen, K.Q.2    On, C.J.3    Wilder-Smith, E.P.V.4    Li, X.P.5
  • 48
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C, (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2: 121-157.
    • (1998) Data Min Knowl Discov , vol.2 , pp. 121-157
    • Burges, C.1
  • 49
    • 0034108247 scopus 로고    scopus 로고
    • Removing electroencephalographic artifacts by blind source separation
    • Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, et al. (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37(2): 163-178.
    • (2000) Psychophysiology , vol.37 , Issue.2 , pp. 163-178
    • Jung, T.P.1    Makeig, S.2    Humphries, C.3    Lee, T.W.4    McKeown, M.J.5
  • 50
    • 78751550144 scopus 로고    scopus 로고
    • Recurrence-based estimation of time-distortion functions for ERP waveform reconstruction
    • Ihrke M, Schrobsdorff H, Herrmann JM, (2011) Recurrence-based estimation of time-distortion functions for ERP waveform reconstruction. Int J Neural Syst 21(1): 65-78.
    • (2011) Int J Neural Syst , vol.21 , Issue.1 , pp. 65-78
    • Ihrke, M.1    Schrobsdorff, H.2    Herrmann, J.M.3
  • 51
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang GB, Chen L, (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71: 3460-3468.
    • (2008) Neurocomputing , vol.71 , pp. 3460-3468
    • Huang, G.B.1    Chen, L.2
  • 52
    • 55949132682 scopus 로고    scopus 로고
    • A fast pruned extreme learning machine for classification problem Neurocomputing
    • Rong HJ, Ong YS, Tan AH, Zhu Z, (2008) A fast pruned extreme learning machine for classification problem Neurocomputing. 72: 359-366.
    • (2008) , vol.72 , pp. 359-366
    • Rong, H.J.1    Ong, Y.S.2    Tan, A.H.3    Zhu, Z.4
  • 53
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification
    • Huang GB, Zhou H, Ding X, Zhang R, (2010) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybernetics 42(2): 513-529.
    • (2010) IEEE Trans Syst Man Cybernetics , vol.42 , Issue.2 , pp. 513-529
    • Huang, G.B.1    Zhou, H.2    Ding, X.3    Zhang, R.4
  • 54
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate on-line sequential learning algorithm for feedforward networks IEEE Trans Neural Networks
    • Liang NY, Huang GB, Saratchandran P, Sundararajan N, (2006) A fast and accurate on-line sequential learning algorithm for feedforward networks IEEE Trans Neural Networks. 17: 1411-1423.
    • (2006) , vol.17 , pp. 1411-1423
    • Liang, N.Y.1    Huang, G.B.2    Saratchandran, P.3    Sundararajan, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.