메뉴 건너뛰기




Volumn 34, Issue 4, 2008, Pages 2870-2878

Application of wrapper approach and composite classifier to the stock trend prediction

Author keywords

Classification; Feature selection; Stock prediction; Voting; Wrapper

Indexed keywords

BACKPROPAGATION; COSTS; FEATURE EXTRACTION; MATHEMATICAL MODELS; NEURAL NETWORKS; SUPPORT VECTOR MACHINES; UNCERTAINTY ANALYSIS;

EID: 38649113208     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.05.035     Document Type: Article
Times cited : (150)

References (24)
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 (1998) 121-167
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.1
  • 4
    • 38649135975 scopus 로고    scopus 로고
    • Chang, Chih-Chung, & Lin, Chih-Jen (2001). LIBSVM: A library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • Chang, Chih-Chung, & Lin, Chih-Jen (2001). LIBSVM: A library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
  • 6
    • 38649114150 scopus 로고    scopus 로고
    • Endou, T., & Zhao, Q. F. (2002). Generation of comprehensible decision trees through evolution of training data. In IEEE congress on evolutionary computation.
    • Endou, T., & Zhao, Q. F. (2002). Generation of comprehensible decision trees through evolution of training data. In IEEE congress on evolutionary computation.
  • 9
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes G.F. On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory IT-14 1 (1968) 55-63
    • (1968) IEEE Transactions on Information Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 10
    • 38649117357 scopus 로고    scopus 로고
    • Kelly, J. D., & Davis, L. (1991). Hybridizing the genetic algorithm and the k nearest neighbors classification algorithm. In Proceedings of the fourth international conference on genetic algorithms & applications (pp. 377-383).
    • Kelly, J. D., & Davis, L. (1991). Hybridizing the genetic algorithm and the k nearest neighbors classification algorithm. In Proceedings of the fourth international conference on genetic algorithms & applications (pp. 377-383).
  • 11
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecasting using support vector machines
    • Kim K. Financial time series forecasting using support vector machines. Neurocomputing 55 (2003) 307-319
    • (2003) Neurocomputing , vol.55 , pp. 307-319
    • Kim, K.1
  • 12
    • 0034249322 scopus 로고    scopus 로고
    • Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index
    • Kim K., and Han I. Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert Systems with Applications 19 (2000) 125-132
    • (2000) Expert Systems with Applications , vol.19 , pp. 125-132
    • Kim, K.1    Han, I.2
  • 13
    • 0031381525 scopus 로고    scopus 로고
    • Kohavi, Ron, & John, George H. (1995). Wrappers for feature subset. Artificial Intelligence Journal, 97(1-2), 273-324.
    • Kohavi, Ron, & John, George H. (1995). Wrappers for feature subset. Artificial Intelligence Journal, 97(1-2), 273-324.
  • 15
    • 38649138568 scopus 로고    scopus 로고
    • Llorà, X., & Garrell, J. M. (2001). Evolution of decision trees. In Proceedings of the conference on artificial intelligence.
    • Llorà, X., & Garrell, J. M. (2001). Evolution of decision trees. In Proceedings of the conference on artificial intelligence.
  • 17
    • 38649123119 scopus 로고    scopus 로고
    • Papagelis, A., & Kalles, D. (2001). Breeding decision trees using evolutionary techniques. In Proceedings of the international conference on machine learning.
    • Papagelis, A., & Kalles, D. (2001). Breeding decision trees using evolutionary techniques. In Proceedings of the international conference on machine learning.
  • 18
    • 27144553769 scopus 로고    scopus 로고
    • Peterson, M. R., Doom, T. E., & Raymer, M. L. (2005). GA-facilitated KNN classifier optimization with varying similarity measures. In IEEE congress on evolutionary computation, Vol. 3 (pp. 2514-2521).
    • Peterson, M. R., Doom, T. E., & Raymer, M. L. (2005). GA-facilitated KNN classifier optimization with varying similarity measures. In IEEE congress on evolutionary computation, Vol. 3 (pp. 2514-2521).
  • 24
    • 80855135228 scopus 로고    scopus 로고
    • Data mining: Practical machine learning tools and techniques
    • Morgan Kaufman, San Francisco
    • Witten I.H., and Frank E. Data mining: Practical machine learning tools and techniques. 2nd ed. (2005), Morgan Kaufman, San Francisco
    • (2005) 2nd ed.
    • Witten, I.H.1    Frank, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.