메뉴 건너뛰기




Volumn 37, Issue 7, 2010, Pages 4902-4909

Combination of feature selection approaches with SVM in credit scoring

Author keywords

Decision tree; F score; Linear discriminate analysis; Rough sets theory; Support vector machine

Indexed keywords

CREDIT SCORING; CREDIT SCORING MODEL; DATA SETS; DISCRIMINATE ANALYSIS; F-SCORE; FEATURE SELECTION; FEATURE SPACE; FEATURES SELECTION; NON-PARAMETRIC; OPTIMAL SUBSETS; PRE-PROCESSING STEP; REDUNDANT FEATURES; ROUGH SET; ROUGH SETS THEORY; SVM CLASSIFIERS; SVM MODEL; SVM(SUPPORT VECTOR MACHINE); UNIVERSITY OF CALIFORNIA; WILCOXON SIGNED RANK TEST;

EID: 77950189091     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.12.025     Document Type: Article
Times cited : (170)

References (39)
  • 1
    • 0004493166 scopus 로고    scopus 로고
    • On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
    • Amaldi E., and Kann V. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science 209 1-2 (1998) 237-260
    • (1998) Theoretical Computer Science , vol.209 , Issue.1-2 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 2
    • 56349130760 scopus 로고    scopus 로고
    • Support vector machines for credit scoring and discovery of significant features
    • Bellotti T., and Crook J. Support vector machines for credit scoring and discovery of significant features. Expert Systems with Applications 36 2p2 (2008) 3302-3308
    • (2008) Expert Systems with Applications , vol.36 , Issue.2 PART 2 , pp. 3302-3308
    • Bellotti, T.1    Crook, J.2
  • 5
    • 34547656102 scopus 로고    scopus 로고
    • A SVM-based cursive character recognizer
    • Camastra F. A SVM-based cursive character recognizer. Pattern Recognition 40 12 (2007) 3721-3727
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3721-3727
    • Camastra, F.1
  • 8
    • 37649025659 scopus 로고    scopus 로고
    • Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods
    • Cho B.H., Yu H., Kim K.W., Kim T.H., Kim I.Y., and Kim S.I. Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artificial Intelligence in Medicine 42 1 (2008) 37-53
    • (2008) Artificial Intelligence in Medicine , vol.42 , Issue.1 , pp. 37-53
    • Cho, B.H.1    Yu, H.2    Kim, K.W.3    Kim, T.H.4    Kim, I.Y.5    Kim, S.I.6
  • 9
    • 32044437552 scopus 로고    scopus 로고
    • A prototype classification method and its use in a hybrid solution for multiclass pattern recognition
    • Chou C.H., Lin C.C., Liu Y.H., and Chang F. A prototype classification method and its use in a hybrid solution for multiclass pattern recognition. Pattern Recognition 39 4 (2006) 624-634
    • (2006) Pattern Recognition , vol.39 , Issue.4 , pp. 624-634
    • Chou, C.H.1    Lin, C.C.2    Liu, Y.H.3    Chang, F.4
  • 10
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M., and Liu H. Feature selection for classification. Intelligent Data Analysis 1 (1997) 131-156
    • (1997) Intelligent Data Analysis , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 12
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7 (1936) 179-188
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 13
    • 0029065312 scopus 로고
    • Primary cutaneous melanoma-identification of prognostic groups and estimation of individual prognosis for 5093 patients
    • Garbe C. Primary cutaneous melanoma-identification of prognostic groups and estimation of individual prognosis for 5093 patients. Cancer 75 (1995) 2484-2491
    • (1995) Cancer , vol.75 , pp. 2484-2491
    • Garbe, C.1
  • 17
    • 34047126555 scopus 로고    scopus 로고
    • Credit scoring with a data mining approach based on support vector machines
    • Huang C.L., Chen M.C., and Wang C.J. Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications 33 4 (2007) 847-856
    • (2007) Expert Systems with Applications , vol.33 , Issue.4 , pp. 847-856
    • Huang, C.L.1    Chen, M.C.2    Wang, C.J.3
  • 18
    • 34248585875 scopus 로고    scopus 로고
    • Prediction model building and feature selection with support vector machines in breast cancer diagnosis
    • Huang C.L., Liao H.C., and Chen M.C. Prediction model building and feature selection with support vector machines in breast cancer diagnosis. Expert Systems with Applications 34 1 (2008) 578-587
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 578-587
    • Huang, C.L.1    Liao, H.C.2    Chen, M.C.3
  • 19
    • 33644600030 scopus 로고    scopus 로고
    • Two-stage genetic programming (2SGP) for the credit scoring model
    • Huang J.-J., Tzeng G.-H., and Ong C.-S. Two-stage genetic programming (2SGP) for the credit scoring model. Applied Mathematics and Computation 174 2 (2006) 1039-1053
    • (2006) Applied Mathematics and Computation , vol.174 , Issue.2 , pp. 1039-1053
    • Huang, J.-J.1    Tzeng, G.-H.2    Ong, C.-S.3
  • 21
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo M., and Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33 1 (2000) 25-41
    • (2000) Pattern Recognition , vol.33 , Issue.1 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 22
    • 17844382437 scopus 로고    scopus 로고
    • A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines
    • Lee T.-S., and Chen I.F. A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Systems with Applications 28 4 (2005) 743-752
    • (2005) Expert Systems with Applications , vol.28 , Issue.4 , pp. 743-752
    • Lee, T.-S.1    Chen, I.F.2
  • 24
    • 31544469206 scopus 로고    scopus 로고
    • Feature selection for classification by using a Ga-based neural network approach
    • Li T.-S. Feature selection for classification by using a Ga-based neural network approach. Journal of the Chinese Institute of Industrial Engineers 23 (2006) 55-64
    • (2006) Journal of the Chinese Institute of Industrial Engineers , vol.23 , pp. 55-64
    • Li, T.-S.1
  • 28
    • 0021432461 scopus 로고
    • Academic Press Ltd
    • Pawlak (1984). Rough classification (Vol. 20, pp. 469-483). Academic Press Ltd.
    • (1984) Rough classification , vol.20 , pp. 469-483
    • Pawlak1
  • 29
    • 0002442571 scopus 로고
    • Discovering rules from large collections of examples: A case study
    • Quinlan J.R. Discovering rules from large collections of examples: A case study. Expert Systems in the Micro-electroni (1979) 168-201
    • (1979) Expert Systems in the Micro-electroni , pp. 168-201
    • Quinlan, J.R.1
  • 31
    • 24144458623 scopus 로고    scopus 로고
    • Support vector machines for classifying and describing credit applicants: Detecting typical and critical regions
    • Schebesch K.B., and Stecking R. Support vector machines for classifying and describing credit applicants: Detecting typical and critical regions. Journal of the Operational Research Society 56 9 (2005) 1082-1088
    • (2005) Journal of the Operational Research Society , vol.56 , Issue.9 , pp. 1082-1088
    • Schebesch, K.B.1    Stecking, R.2
  • 33
    • 34248566911 scopus 로고    scopus 로고
    • Feature selection for the SVM: An application to hypertension diagnosis
    • Su C.T., and Yang C.H. Feature selection for the SVM: An application to hypertension diagnosis. Expert Systems with Applications 34 1 (2008) 754-763
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 754-763
    • Su, C.T.1    Yang, C.H.2
  • 34
    • 37249066672 scopus 로고    scopus 로고
    • Robustness through prior knowledge: Using explanation-based learning to distinguish handwritten Chinese characters
    • Sun Q., Wang L.L., Lim S.H., and DeJong G. Robustness through prior knowledge: Using explanation-based learning to distinguish handwritten Chinese characters. International Journal on Document Analysis and Recognition 10 3-4 (2007) 175-186
    • (2007) International Journal on Document Analysis and Recognition , vol.10 , Issue.3-4 , pp. 175-186
    • Sun, Q.1    Wang, L.L.2    Lim, S.H.3    DeJong, G.4
  • 35
    • 0001466281 scopus 로고    scopus 로고
    • A survey of credit and behavioural scoring: Forecasting financial risk of lending to consumers
    • Thomas L.C. A survey of credit and behavioural scoring: Forecasting financial risk of lending to consumers. International Journal of Forecasting 16 2 (2000) 149-172
    • (2000) International Journal of Forecasting , vol.16 , Issue.2 , pp. 149-172
    • Thomas, L.C.1
  • 37
    • 33845523839 scopus 로고    scopus 로고
    • Feature selection based on rough sets and particle swarm optimization
    • Wang X., Yang J., Teng X., Xia W., and Jensen R. Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters 28 4 (2007) 459-471
    • (2007) Pattern Recognition Letters , vol.28 , Issue.4 , pp. 459-471
    • Wang, X.1    Yang, J.2    Teng, X.3    Xia, W.4    Jensen, R.5
  • 38
    • 0034118581 scopus 로고    scopus 로고
    • Neural network credit scoring models
    • West D. Neural network credit scoring models. Computers and Operations Research 27 11-12 (2000) 1131-1152
    • (2000) Computers and Operations Research , vol.27 , Issue.11-12 , pp. 1131-1152
    • West, D.1
  • 39
    • 34548258153 scopus 로고    scopus 로고
    • Data analysis based on discernibility and indiscernibility
    • Zhao Y., Yao Y., and Luo F. Data analysis based on discernibility and indiscernibility. Information Sciences 177 22 (2007) 4959-4976
    • (2007) Information Sciences , vol.177 , Issue.22 , pp. 4959-4976
    • Zhao, Y.1    Yao, Y.2    Luo, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.